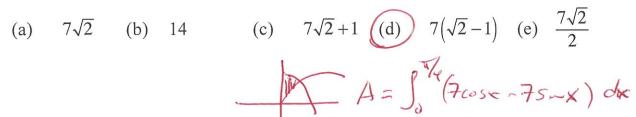
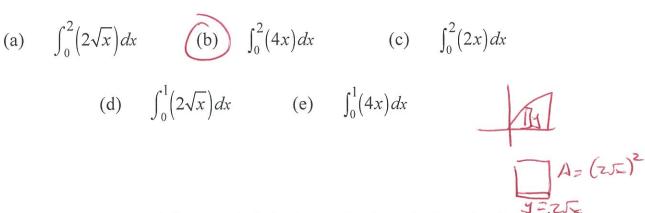
AB Calculus '19-20
Volume Test
Calculator Allowed

1. The area of the region in the first quadrant bounded by the graphs of $y = 7\cos x$, $y = 7\sin x$ and the y-axis is



2. The base of a solid is the region bounded by $y = 2\sqrt{x}$, the x-axis, and x = 2. Each cross-section of the solid perpendicular to the x-axis is a square, with one side on the xy-plane. Which of the following expressions represents the volume of the solid?



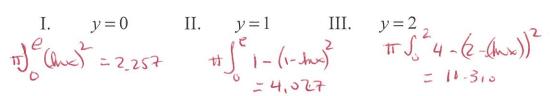
3. Which of the following definite integrals gives the length of $y = e^{4x}$ on $0 \le x \le 2$?

(a)
$$\int_0^2 \sqrt{1 + e^{8x}} dx$$
 (b) $\int_0^2 \sqrt{1 + 16e^{8x}} dx$ (c) $\int_0^2 \sqrt{x + 16e^{8x}} dx$ (d) $\int_0^2 \sqrt{x + e^{8x}} dx$ (e) $\int_0^2 \sqrt{e^{4x} + 16e^{8x}} dx$

$$\frac{dy}{dw} = e^{4cx} \left(\frac{dy}{e} \right)$$

$$L = \int_{0}^{2} \left[1 + \left(\frac{dy}{dw} \right)^{2} \right]$$

A region is bounded by $y = \ln x$, the x-axis, and the line x = e. Order from smallest to largest the volumes of the solids formed by rotating the region about the following lines:

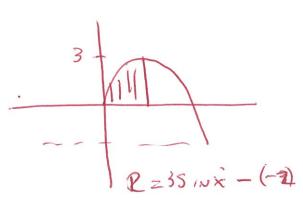


- III < II < I(a)
- $(p) \qquad III < I < II$

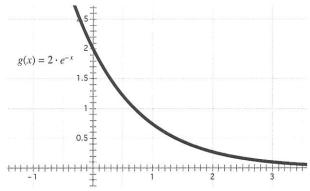
- - I < II < III (e) I < III < II
- The region enclosed by the graphs of $y = x^3 1$ and y = x 1 is revolved about 5. the y-axis. The volume of this solid is
- (a) 0.360
- (b) 0.972

- (c) 1.944 (d) 3.032 (e) 6.462

- V=# [3/4+1)2- (y+1)2dy = 6.462
- The region bounded by the following graph $y = 3\sin x$ and the x-axis on 6. $0 \le x \le \frac{\pi}{2}$, is rotated about the line y = -2. The volume of the solid is represented by
- (a) $\pi \int_{0}^{\frac{\pi}{2}} ((3\sin x + 2)^2 4) dx$
 - (b) $2\pi \int_{0}^{\frac{\pi}{2}} (9\sin^2 x + 2) dx$
 - (c) $\pi \int_{0}^{\frac{\pi}{2}} (9\sin^2 x 4) dx$
 - (d) $2\pi \int_0^{\frac{\pi}{2}} 9\sin(x+2)^2 dx$
 - (e) $2\pi \int_{0}^{\frac{\pi}{2}} (3\sin x + 2)^2 dx$



7. Let R be the region in the first quadrant enclosed by the graph of $y = 2e^{-x}$ and the line x = k.



(a) Find the area of R. Show the integration steps.

$$A = \int_{0}^{k} 2e^{-k} dx$$

$$= -2e^{-k} \int_{0}^{k} dx$$

$$= -2e^{-k} - (-2) = 2 - 2e^{-k}$$

(b) Find the volume, in terms of k, of the solid generated when R is revolved about the x-axis. Show the integration steps.

DISK
$$V = \Pi \int_{0}^{K} (2e^{-x})^{2} dx = 4\pi \int_{0}^{K} e^{2x} dx$$

$$= 4\pi \left(-\frac{e^{-2x}}{2} \right)^{K}$$

$$= 2\Pi \left[-\frac{e^{-2x}}{2} - (-1) \right]$$

$$= 2\Pi \left[-\frac{e^{-2x}}{2} - (-1) \right]$$

(c) If k = 3, find the volume of the solid where the cross-sections perpendicular to the *x*-axis are squares. Show the integration steps.

$$\int_{0}^{3} (de^{-x})^{2} dx$$

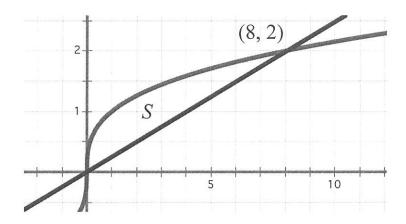
$$= 4 \int_{0}^{3} e^{-2x} dx$$

$$= 4 \left(\frac{-2x}{-2} \right)_{0}^{3}$$

$$= -2e^{-6} - (-2)$$

= 1,995

8. Let S be the region in the first quadrant enclosed by the graph of $y = \sqrt[3]{x}$ and the line $y = \frac{1}{4}x$, as shown below.



a) Find the volume if the solid formed if *S* is rotated about the *x*-axis.

(3) b) Find the volume if the solid formed if S is rotated about the line y = 3.

$$R = 3 - 1/4 \times \Gamma_2 \quad 3 - (3/x)$$

$$V = T \int_0^2 (3 - \frac{1}{4}x)^2 - (3 - x^{1/3})^2 dx$$

$$= 48.590$$

Set up, but do not solve, the equation for the volume of the solid formed if S is rotated about the line x = 8.

(4) V= tr
$$\int_{0}^{2} (8-y^{3})^{2} - (8-4y)^{2} dy$$