AP Calculus AB '21-22

Fall Final Part II

Calculator Allowed

Name:

SOLUTION KEY

$$f(x) = 4x - x^3$$

x	g(x)	g'(x)		
0	-1	1		
2	1	3		
4	3	6		
6	6	12		
8	4	8		
4		6 12		

1. Let f(x) be the function defined by the equation above, let h(x) be the function whose graph is given above, and let g(x) be a differentiable function with selected values for g(x) and g'(x) given on the table above.

(a) Find the equation of the line tangent to g(x) at x = 4.

(b) Let K be the function defined by K(x) = h(f(x)). Find K'(1).

20

(c) Let M be the function defined by
$$M(x) = g(x) \cdot f(x)$$
. Find $M'(6)$.

$$M'(6) = g(6) \cdot f'(6) + f(6) \cdot g'(6)$$
 $f'(6) = 6 (-104) + (192)(12)$

(d) Let
$$J$$
 be the function defined by $J(x) = \frac{g(x)}{h(2x)}$. Find $J'(4)$.

$$= (+2)(6) - 3(-1/2)(2) \xrightarrow{3} + 1.5$$

$$(1/2)^{2} = \frac{1}{1/4}$$

$$= \frac{1}{1/4}$$

$$= \frac{1}{1/4}$$

$$= \frac{1}{1/4}$$

$$= \frac{1}{1/4}$$

$$= \frac{1}{1/4}$$

- 2. Consider the differential equation $\frac{dy}{dx} = \frac{y}{x^2 + 4}$. Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = 4. The function y = f(x) is defined for all real numbers.
- a) Find the equation of the line tangent to y = f(x) at f(0) = 4

(2)
$$\frac{dy}{do}|_{0,4} = \frac{4}{0+4} = 1$$
 $y - 4 = 1 (x - 0)$

b) Use your answer in part a) to approximate f(-0.1).

$$f = 3.9$$

6

c) Find y = f(x), the particular solution to the differential equation with the initial condition f(0) = 4.

$$\int \frac{1}{y} = \int \frac{1}{x^{2}+44}$$

$$\int \frac{1}{x^{2}+4$$

3. Dr. Quattrin decides to lease solar panels from Sunrun Solar. After a year, he reanalyzes his PG&E bill to track both his consumption of electricity ($C_e(t)$) and his production of electricity ($P_e(t)$) over the course of a year. The table below show the consumption of electricity, measured in kilowatts per month (kWs/mo).

t months	0	1	2	3	4	5	6
$C_e(t)$ in	326.5	660.0	667.1	538.4	420.5	412.1	347.8

t months	7	8	9	10	11	12
$C_e(t)$	287.5	303.1	322.4	342.5	390.3	384.2

 $P_e(t) = 407 - 374.2\cos\left[\frac{\pi}{6}t\right]$ models the production in kW per month gathered by the solar panels and that PG&E buys back.

a) How much power does PG&E buy back from the Quattrins over the course of <u>first six months</u> of the year? Indicate the units.

b) Using the midpoint Riemann sum, approximate the amount of power the Quattrins consume over the course of the <u>first six months</u> of the year.

$$M(t) = -0.518(x+1)^4 + 16.137(x+1)^3 - 166.554(x+1)^2 + 610.665(x+1) - 90.552$$

c) Assume the equation M(t) above is an appropriate model for the $C_e(t)$ data. Find the time during the year when PG&E owes the maximum refund to Dr Q.

(4) Ceitian Values WHEN
$$P(t) = m(t)$$
 (1)
$$t = 3.6363787, 9.3641142 (1)$$

$$t = 1.323 kW$$
(1) 3.636 1611.323 kW
$$9.364 = 138.385 kW$$
12 486.537 kW

E= 3.636 MONTAS.

End of AP Calculus AB '21-22 Fall Final Part II