AB Calculus '20-21 Limit Test v4 No Calculator

Name_____

1. Let $f(x) = \begin{cases} \ln(1-x), & \text{if } x \le 0 \\ \tan x, & \text{if } 0 < x \end{cases}$. Which of the following statements is **false**

about f?

(a)
$$f$$
 is continuous at $x = 0$.

- (b) f is not differentiable at x = 0.
- (c) f has a local maximum at x = 0.
- d) f has a point of inflection at x = 0.

2. The function f is defined on the interval $x \in (-4, 4)$ and has the graph shown below.

For which of the following values is f not differentiable?

- a) -3 and 2 only b) 0 only c) -2 and 0 only
 - d) -4, -2, and 0 only e) -3, -2, 0, and 2

3. The function f is shown below. Which of the following statements about the function f, shown below, is true?

- a) $\lim_{x\to 0} f(x)$ does not exist
- b) $\lim_{x \to 2} f(x)$ exists

c)
$$f$$
 is continuous at $x = -2$

d)
$$\lim_{h \to 0} \frac{f(1-h)+3}{h}$$
 exists

4.
$$\lim_{h \to 0} \frac{2\left(\frac{1}{3} + h\right)^3 - 2\left(\frac{1}{3}\right)^3}{h} = 1$$

(a) 0 (b) 2 (c)
$$\frac{1}{3}$$
 (d) $\frac{2}{3}$ (e) DNE

5.
$$\lim_{x \to \infty} \left(\tan^{-1} \left(\frac{x}{e^x} + 1 \right) \right) =$$

(a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) 1 (e) DNE

x	f(x)	f'(x)	f''(x)	f'''(x)
3	0	5	0	5

6. Given that f(x) is a thrice differentiable, continuous function on the interval (0, 4) with the table values given above. $\lim_{x \to 3} \frac{(x-3)^3}{f(x)} =$

(a) 0 (b) $\frac{7}{3}$ (c) $\frac{5}{3}$ (d) $\frac{5}{6}$ (e) dne

7. The function f is defined on the interval $x \in [-5, 5]$ and has the graph shown below.

Which of the following is true?

a)
$$\lim_{x \to 2} f(x) = 1$$
 b) $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = dne$

c)
$$\lim_{x \to 3} f(x) = f(6)$$
 d) $\lim_{x \to 4^-} f(x) = 4$

8. At
$$x = 0$$
, the function given by $f(x) = \begin{cases} e^x, if x \le 0\\ \sin x, if 0 < x \end{cases}$ is

- (A) Undefined
- (B) Continuous but not differentiable
- (C) Differentiable but not continuous
- (D) Neither continuous nor differentiable
- (E) Both continuous and differentiable

9. Which of the following functions is NOT differentiable at $x = \frac{\pi}{2}$?

(a)
$$f(x) = x^2$$
 (b) $f(x) = e^x$ (c) $f(x) = \ln(x+1)$

(d)
$$f(x) = \sec x$$
 (e) $f(x) = \cot x$

10.
$$\lim_{x \to 0} \frac{\int_0^{x^3} \cos t^2 dt}{x^3} =$$

(a) 0 (b) 1 (c) $\frac{1}{3}$ (d) 3 (e) DNE

11. A function f(x) has a vertical asymptote at x = -2. The derivative of f(x) is positive for all x < -2 and negative for all -2 < x. Which of the following statements are **true**?

- a) $\lim_{x \to -2^-} f(x) = -\infty$ and $\lim_{x \to -2^+} f(x) = -\infty$
- b) $\lim_{x \to -2^-} f(x) = -\infty$ and $\lim_{x \to -2^+} f(x) = +\infty$
- c) $\lim_{x \to -2^-} f(x) = +\infty$ and $\lim_{x \to -2^+} f(x) = +\infty$
- d) $\lim_{x \to -2^-} f(x) = -\infty$ and $\lim_{x \to -2^+} f(x) = -\infty$

- 12. Given the graph of f(x) above, the reason that f(x) is not continuous at
- a) f(0) does not exist
- b) $\lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$
- c) $\lim_{x \to 0} f(x) \neq f(0)$
- d) $\lim_{x \to 0} f(x)$ does not exist

AB Calculus '20-21	Name
Limit Test v4	
Calculator allowed	

Score_

Directions: Show all work.

- 1. For this graph, find
- (a) $\lim_{x \to -1^{-}} f(x) =$ (b) $\lim_{x \to 0^{-}} f(x) =$ (c) $\lim_{x \to 1} f(x) =$
- (d) $\lim_{x \to -1} f(x) =$ (e) $\lim_{x \to 0^+} f(x) =$ (f) $\lim_{x \to -1^+} f(x) =$
- (g) f(-1) = (h) f(0) = (i) f(1) = (j) f(2) =

2.
$$h(x) = \begin{cases} 10 - x^2, & \text{if } x < -3 \\ e^{x+3}, & \text{if } -3 \le x \end{cases}$$

a) Is
$$f(x)$$
 continuous at $x = 0$? Why/Why not?

(b) Find
$$f'(-1)$$
 and $f'(-4)$.

(c) Express f'(x) as a piecewise-defined function. Explain why f'(0) does not exist.

(d) Find
$$\lim_{x \to -3^+} \frac{f(x)}{\ln(x+2)}$$
. Justify your answer.