AB Calculus '20-21
Limit Test v4
No Calculator

1. Let $f(x)=\left\{\begin{array}{c}\ln (1-x), \text { if } x \leq 0 \\ \tan x, \text { if } 0<x\end{array}\right.$. Which of the following statements is false about f ?
(a) $\quad f$ is continuous at $x=0$.
(b) $\quad f$ is not differentiable at $x=0$.
(c) $\quad f$ has a local maximum at $x=0$.
d) $\quad f$ has a point of inflection at $x=0$.
2. The function f is defined on the interval $x \in(-4,4)$ and has the graph shown below.

For which of the following values is f not differentiable?
a) - 3 and 2 only
b) 0 only
c) -2 and 0 only
d) $-4,-2$, and 0 only
e) $-3,-2,0$, and 2
3. The function f is shown below. Which of the following statements about the function f, shown below, is true?

a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $\quad \lim _{x \rightarrow 2} f(x)$ exists
c) $\quad f$ is continuous at $x=-2$
d) $\lim _{h \rightarrow 0} \frac{f(1-h)+3}{h}$ exists
4. $\lim _{h \rightarrow 0} \frac{2\left(\frac{1}{3}+h\right)^{3}-2\left(\frac{1}{3}\right)^{3}}{h}=$
(a) 0
(b) 2
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$
(e) DNE
5. $\lim _{x \rightarrow \infty}\left(\tan ^{-1}\left(\frac{x}{e^{x}}+1\right)\right)=$
(a) 0
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) 1
(e) DNE

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$
3	0	5	0	5

6. Given that $f(x)$ is a thrice differentiable, continuous function on the interval $(0,4)$ with the table values given above. $\lim _{x \rightarrow 3} \frac{(x-3)^{3}}{f(x)}=$
(a) 0
(b) $\frac{7}{3}$
(c) $\frac{5}{3}$
(d) $\frac{5}{6}$
(e) dne
7. The function f is defined on the interval $x \in[-5,5]$ and has the graph shown below.

Which of the following is true?
a) $\lim _{x \rightarrow 2} f(x)=1$
b) $\quad \lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=d n e$
c) $\quad \lim _{x \rightarrow 3} f(x)=f(6)$
d) $\quad \lim _{x \rightarrow 4^{-}} f(x)=4$
8. At $x=0$, the function given by $f(x)=\left\{\begin{array}{c}e^{x}, \text { if } x \leq 0 \\ \sin x, \text { if } 0<x\end{array}\right.$ is
(A) Undefined
(B) Continuous but not differentiable
(C) Differentiable but not continuous
(D) Neither continuous nor differentiable
(E) Both continuous and differentiable
9. Which of the following functions is NOT differentiable at $x=\frac{\pi}{2}$?
(a) $\quad f(x)=x^{2}$
(b) $\quad f(x)=e^{x}$
(c) $\quad f(x)=\ln (x+1)$
(d) $f(x)=\sec x$
(e) $f(x)=\cot x$
10. $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{3}} \cos t^{2} d t}{x^{3}}=$
(a) 0
(b) 1
(c) $\frac{1}{3}$
(d) 3
(e) DNE
11. A function $f(x)$ has a vertical asymptote at $x=-2$. The derivative of $f(x)$ is positive for all $x<-2$ and negative for all $-2<x$. Which of the following statements are true?
a) $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$
b) $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$
c) $\lim _{x \rightarrow-2^{-}} f(x)=+\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$
d) $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$

12. Given the graph of $f(x)$ above, the reason that $f(x)$ is not continuous at
a) $\quad f(0)$ does not exist
b) $\quad \lim f(x) \neq \lim f(x)$ $x \rightarrow 0^{-} \quad x \rightarrow 0^{+}$
c) $\quad \lim f(x) \neq f(0)$ $x \rightarrow 0$
d) $\lim f(x)$ does not exist $x \rightarrow 0$

AB Calculus '20-21
Limit Test v4
Calculator allowed
Score \qquad
Directions: Show all work.

1. For this graph, find
(a) $\lim _{x \rightarrow-1^{-}} f(x)=$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=$
(c) $\lim _{x \rightarrow 1} f(x)=$
(d) $\lim _{x \rightarrow-1} f(x)=$
(e) $\lim _{x \rightarrow 0^{+}} f(x)=$
(f) $\lim _{x \rightarrow-1^{+}} f(x)=$
(g) $\quad f(-1)=$
(h) $f(0)=$
(i) $f(1)=$
(j) $\quad f(2)=$
2. $h(x)=\left\{\begin{array}{l}10-x^{2}, \text { if } x<-3 \\ e^{x+3}, \text { if }-3 \leq x\end{array}\right.$
a) Is $f(x)$ continuous at $x=0$? Why/Why not?
(b) Find $f^{\prime}(-1)$ and $f^{\prime}(-4)$.
(c) Express $f^{\prime}(x)$ as a piecewise-defined function. Explain why $f^{\prime}(0)$ does not exist.
(d) Find $\lim _{x \rightarrow-3^{+}} \frac{f(x)}{\ln (x+2)}$. Justify your answer.
