AP Calculus AB ’22-23

Spring Final Part IIA v1
Calculator Allowed
Name:

1. The snowfall in Donner Summit_is tracked by the US Weather Service. For the month of March, 2022, $S(t)$ represents the rate of snowfall in inches per day and its data is presented in the table below. $M(t)=0.65-0.35 \cos \left(\frac{5 x^{0.95}}{6}\right)$ represents the rate at which the snow melts in inches per day, where t is measured in days.

t in days	1	3	4	7	11	15	21
$S(t)$ in inches per day	1.4	4.9	4.4	0.1	4.6	0.2	2.7

a) Find $\int_{1}^{21} M(t) d t$. Using the correct units, explain the meaning of $\frac{1}{21-1} \int_{1}^{21} M(t) d t$.
b) Using a Midpoint Reimann Sum, find $\int_{1}^{21} S(t) d t$. State the correct units.
c) Approximate $S^{\prime}(5)$. Using the correct units, explain $S^{\prime}(5)$ in context of the problem.
d) Assume $S(t)=2.5-2.5 \cos \left(\frac{10 x^{0.9}}{9}\right)$ would model the snow fall. If there were 9 inches of snow on the ground at the beginning of Day 1 , find the minimum amount of snow on the ground between $t=1$ and $t=7$.

2. Many power plants cool their reactions with convective air flow through a hyperboliod tower. The shape increases air flow while minimizing construction material. Consider the shape of a tower formed by revolving the hyperbola $\mathrm{f}(\mathrm{y})=50 \sqrt{\frac{1}{22500} \mathrm{y}^{2}+1}$ on $\mathrm{y} \in[-250,150]$ about the y-axis, where y is measured in feet.
a) Find the volume of the interior of the tower. Indicate the units.
b) Assume that the inner wall is of the shape formed by revolving $\mathrm{f}(\mathrm{y})$ about the y-axis and the outer wall is of the the shape formed by revolving $g(y)=50.583 \sqrt{\frac{1}{22500} y^{2}+1}$ about the y-axis. Find the volume of material needed to make the tower.
c) The temperature S in the tower varies according to the function $S(y)=70 \mathrm{e}^{-0.001(y-150)}$, where y is measured in feet from the narrowest part of the tower. An object is dropped into the tower from the top. It falls at a rate of $\mathrm{R}=-32 \mathrm{tt} / \mathrm{sec}$ and its height $\mathrm{y}=-16 \mathrm{t}^{2}+150 \mathrm{ft}$. How fast is the temperature S changing when the object is at a level after falling for 3 seconds? Indicate the units.

End of

AP Calculus AB ’22-23

Spring Final Part IIA v1

AP Calculus AB ’22-23

Spring Final Part IIB v1
NO Calculator Allowed

Name:

3. The graph above, $f(x)$ on $-6 \leq x \leq 6$, is comprised of two line segments and a semi-circle. Let $g(x)=2+\int_{-3}^{x} f(t) d t$.
(a) Find $g(3), g^{\prime}(3)$, and $g^{\prime \prime}(3)$.
(b) At what x-value(s) on $-6 \leq x \leq 6$ does $g(x)$ have a relative minimum.

Explain your reasoning.
(c) At what x-value(s) on $-6 \leq x \leq 6$ does $g(x)$ have a point of inflection. Explain your reasoning.
(d) On what interval(s) is $g(x)$ both increasing and concave down? Explain why.
4. Particle P moves along the x-axis such that, for time $t>0$, its position is given by $x_{P}(t)=8-2 e^{-2 t}$. Particle Q moves along the y-axis, for time $t>0$, its velocity is given by $v_{Q}(t)=\frac{6}{t^{3}}$. At time $t=1$, the position of particle Q is $y_{Q}(1)=-3$.
a) Find $v_{P}(t)$, the velocity of particle P at time t.
b) Find $a_{Q}(t)$, the acceleration of particle Q at time t. Find all the times t, for $t>0$, when the speed of particle Q is decreasing. Justify your answer.
c) Find $y_{Q}(t)$, the position of particle Q at time t.
d) As $t \rightarrow \infty$, which particle will eventually be farther from the origin. Give a reason for your answer.
5. Consider the function $y^{2}-y+e^{x}=\cos x$.
a) Prove that $\frac{d y}{d x}=\frac{e^{x}+\sin x}{1-2 y}$.
b) Find the equation of the tangent line at $(0,1)$.
c) Find the value of $\frac{d^{2} y}{d x^{2}}$ at $(0,1)$. Does the curve have a relative maximum, a relative minimum, or neither at $(0,1)$? Justify your answer.
6. A cup of coffee is made with boiling water at a temperature of $100 \mathrm{C}^{\circ}$, in a room at temperature $20 \mathrm{C}^{\circ}$. After two minutes, it has cooled to $80 \mathrm{C}^{\circ}$. According to Newton's Law of Cooling, the temperature of the coffee follows the differential equation

$$
\frac{d y}{d t}=-0.14(y-20)
$$

where y is the temperature of the coffee at time t minutes.

(a) Above is given a partial slope field for the temperature differential equation. Draw the solution to the differential equation at $(5,60)$.
(b) If $y(0)=100$, find the equation of the line tangent to the temperature curve and use the tangent line equation to approximate $y(5)$. Explain what this estimate means.
(c) Find the particular solution to $\frac{d y}{d t}=-0.14(y-20)$ with the initial condition $y(0)=100$.

End of

AP Calculus AB ’22-23

Spring Final Part IIB v1

