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1. The snowfall in Donner Summit is tracked by the US Weather Service. For
the month of March, 2022, S(#) represents the rate of snowfall in inches per day

0.95
X
and its data is presented in the table below. M(z) =0.65 — 0.35003( 6 )

represents the rate at which the snow melts in inches per day, where ¢ is measured
in days.
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a) Find f M (t) dt. Using the correct units, explain the meaning of
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b)  Using a Midpoint Reimann Sum, find f S(#) dt. State the correct units.
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c) Approximate S ’(5). Using the correct units, explain § ’(5) in context of the

problem. o
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d) Assume S(t)=2.5- 2.5005( ) would model the snow fall. If there

were 9 inches of snow on the ground at the beginning of Day 1, find the minimum
amount of snow on the ground between f=1and r=7.
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2. Many power plants
cool their reactions with
convective air flow
through a hyperboliod
tower. The shape
increases air flow while
minimizing construction

materla Con51der the shape of a tower formed by

revolving the hyperbola f(y)=50 ,, 55200” 2+1 on

ye [—250, 150] about the y-axis, where y is measured in
feet.

a)  Find the volume of the interior of the tower. Indicate the units. S T sT1=DN
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b)  Assume that the inner wall is of the shape formed by revolving f ( y) about
the y-axis and the outer wall is of the the shape formed by revolving

g(y)=50.583, ’ 3 2; = y?+1 about the y-axis. Find the volume of material needed

to make the tower.
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c) The temperaturei.S",\in the tower varies according to the function
S(y)= 700011 , where y is measured in feet from the narrowest part of the

tower. An object is dropped into the tower from the top. It falls at a rate of
R=-32t % . and its height y=—16¢2+150 ft. How fast is the temperature §

changing when the object is at a level after falling for 3 seconds? Indicate the
units. o
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3. The graph above, h(x) on —6 < x <6, is comprised of two line segments and
a semi-circle. Let g(x) =2+ f xf (t) dt.
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@ (a) Find g(3), g'(3), and g"'(3).
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@ (b) At what x-value(s) on —6 < x <6 does g(x) have a relative minimum.
Explain your reasoning.
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5 () Atwhatx-value(s)on —6<x<6 does g(x) have a point of inflection.
Explain your reasoning.
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(d) On what interval(s) is g(x) both increasing and concave down? Explain
why.
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4. Particle P moves along the x-axis such that, for time ¢ > (, its position is

given by xP( t) =8 —2¢ 2. Particle Q moves along the y-axis, for time ¢ >, its
6

velocity is given by vQ(t) =—. Attime ¢ =1, the position of particle O is

t
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@ a) Find vp(t), the velocity of particle P at time ¢.
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b)  Find aQ(t), the acceleration of particle Q at time ¢. Find all the times ¢, for
@ t >0, when the speed of particle Q is decreasing. Justify your answer.
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c) Find yo( 1), the position of particle Q at time 7.
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d)  As t - oo, which particle will eventually be farther from the origin. Give a
B reason for your answer.
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S Consider the function y2—y + e* =cos x.
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@ b)  Find the equation of the tangent line at (0, 1).
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d2
¢)  Find the value of __y; at (0, 1). Does the curve have a relative maximum, a

relative minimum, or neither at (0, 1)? Justify your answer.
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6. A cup of coffee is made with boiling water at a temperature of 100 C°, in a
room at temperature 20 C°. After two minutes, it has cooled to 80 C°. According
to Newton’s Law of Cooling, the temperature of the coffee follows the differential

equation

y
— = —0.14(y - 20),
- (y—20)

where y is the temperature of the coffee at time # minutes.
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(a) Above is given a partial slope field for the temperature differential equation.
Draw the solution to the differential equation at (5, 60).




(b) If y(0) =100, find the equation of the line tangent to the temperature curve

and use the tangent line equation to approximate y(@) Explain what this estimate
S

means.

M= 4 i (e00-20) = =112
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{ (c) Find the particular solution to E = —0.14(y — 20) with the initial
condition y(0) = 100.
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