AP Calculus AB '23-24
Name \qquad
Dr. Quattrin - ${ }^{\text {st }}$ Period
Derivative Test
score \qquad
Part I: Multiple choice (20 minutes) - Circle correct answer.

1. Suppose f is a differentiable function such that $f(-2)=1$ and $f^{\prime}(-2)=\frac{1}{4}$. Using the line tangent to the graph of $f(x)$ at $x=-2$, find the approximation of $f(-1.9)$
a) 0.975
b) -2.225
c) $\quad 1.775$
d) 1.025
2. If $f(x)=\sin x$, then $f^{\prime}\left(\frac{\pi}{3}\right)=$
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{\sqrt{2}}{2}$ (e) $\sqrt{3}$
3. Which of the following statements must be false?
a) $\frac{d}{d x}(x \tan x)=\tan x+x \sec ^{2} x$
b) $\frac{d}{d x}\left(\frac{3}{4+x^{2}}\right)=\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
c) $\frac{d}{d x} \sqrt{1-x}=\frac{1}{2 \sqrt{1-x}}$
d) $\frac{d}{d x}\left(\ln x^{3}\right)=\frac{3}{x}$
4. A particle moves along a straight line with equation of motion $s=t^{3}+t^{2}$. Find the value of t at which the acceleration is zero.
a) $-\frac{2}{3}$
b) $-\frac{1}{3}$
c) $\frac{2}{3}$
d) $\frac{1}{3}$
e) $-\frac{1}{2}$
5. The figure below shows the graph of the functions f and g. The graph of the line tangent to the graph of f at $x=1$ are also shown. If $B(x)=f(x) \cdot g(x)$, what is $B^{\prime}(1)$?

a) $\frac{5}{6}$
b) $-\frac{1}{2}$
c) $-\frac{1}{6}$
d) $\frac{1}{3}$
e) $\frac{7}{6}$
6. Let the function f be differentiable on the interval $[0,2.5]$ and define g by $g(x)=f(f(x))$. Use the table to find $g^{\prime}(2.0)$.

x	0.0	0.5	1.0	1.5	2.0	2.5
$f(x)$	0.5	1.5	2.0	2.5	1.0	0.0
$f^{\prime}(x)$	0.1	0.3	0.6	1.1	2.0	2.2

a) 0.0
b) 1.2
c) 1.65
d) 2.08
e) 2.42
7. If $y=\sin e^{x}$, then $\frac{d^{2} y}{d x^{2}}=$
a) $\cos e^{x}$
b) $\quad e^{x} \sin e^{x}+e^{2 x} \cos e^{x}$
c) $-e^{2 x} \sin e^{x}+e^{x} \cos e^{x}$
d) $e^{2 x} \sin e^{x}-e^{x} \cos e^{2 x}$
e) $\quad e^{x} \cos e^{x}$
8. If $f(x)=\cos ^{2}(3-x)$, then $f^{\prime}(0)=$
a) $-2 \cos 3$
b) $-2 \sin 3 \cos 3$
c) $6 \cos 3$
d) $2 \sin 3 \cos 3$
e) $6 \sin 3 \cos 3$
9. Let $f(x)$ be the function given by $f(x)=\sqrt[3]{x^{2}+2}$. What is the slope of the line tangent to $f(x)$ at $(5,3)$?
a) $-\frac{10}{27}$
b) $\frac{10}{27}$
c) $\frac{2}{\sqrt[3]{11^{2}}}$
d)

$$
\frac{-}{-} \frac{2}{\sqrt[3]{11^{2}}}
$$

AP Calculus AB '23-24
Dr. Quattrin - $1^{\text {st }}$ Period Derivative Test

Name \qquad
score \qquad

Part II: Free Response (35 minutes) - Show all work.
1a. $\frac{d}{d x}\left(\cot ^{-1}\left(e^{5 x}\right)\right)$

1b. $\frac{d}{d x}\left(6 e^{\sqrt{1-x^{2}}}\right)$

x	$g(x)$	$g^{\prime}(x)$
0	-2	12
2	0	-3
4	5	5
6	3	8
8	-4	11

2. Let $f(x)$ be the function whose graph is given above and let $g(x)$ be a differentiable function with selected values for $g(x)$ and $g^{\prime}(x)$ given on the table above.
a) Find the equation of the line tangent to $g(x)$ at $x=4$.
b) Let K be the function defined by $K(x)=g(f(x))$. Find $K^{\prime}(1)$.
c) Let M be the function defined by $M(x)=g(x) \cdot f(x)$. Find $M^{\prime}(4)$.
d) Let J be the function defined by $J(x)=\frac{f(2 x)}{g(x)}$. Find $J^{\prime}(2)$.
3. If $g(x)=\sqrt[3]{4-x^{3}}$, find $g^{\prime \prime}(x)$
4. Find the equations of the lines tangent and normal $y=x \ln \left(5-x^{2}\right)$ at $x=2$.

EC. Using the results in \#4 above, approximate $g(2.8)$.

