AP Calculus AB '23-24
 Name_____

 Dr. Quattrin – 1st Period
 score ______

 Derivative Test
 score ______

Part I: Multiple choice (20 minutes) – Circle correct answer.

1. Suppose *f* is a differentiable function such that f(-2) = 1 and $f'(-2) = \frac{1}{4}$. Using the line tangent to the graph of f(x) at x = -2, find the approximation of f(-1.9)

a) 0.975 b) -2.225 c) 1.775 d) 1.025

2. If
$$f(x) = \sin x$$
, then $f'\left(\frac{\pi}{3}\right) =$

(a)
$$-\frac{1}{2}$$
 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{\sqrt{2}}{2}$ (e) $\sqrt{3}$

3. Which of the following statements must be false?

a)
$$\frac{d}{dx}(x\tan x) = \tan x + x \sec^2 x$$

b)
$$\frac{d}{dx}\left(\frac{3}{4+x^2}\right) = \frac{-6x}{(4+x^2)^2}$$

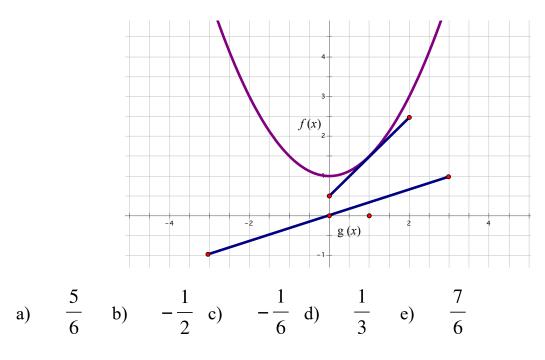
c)
$$\frac{d}{dx}\sqrt{1-x} = \frac{1}{2\sqrt{1-x}}$$

d)
$$\frac{d}{dx}(\ln x^3) = \frac{3}{x}$$

4. A particle moves along a straight line with equation of motion $s = t^3 + t^2$. Find the value of *t* at which the acceleration is zero.

a)
$$-\frac{2}{3}$$
 b) $-\frac{1}{3}$ c) $\frac{2}{3}$ d) $\frac{1}{3}$ e) $-\frac{1}{2}$

5. The figure below shows the graph of the functions f and g. The graph of the line tangent to the graph of f at x = 1 are also shown. If $B(x) = f(x) \cdot g(x)$, what is B'(1)?



6. Let the function f be differentiable on the interval [0,2.5] and define g by g(x) = f(f(x)). Use the table to find g'(2.0).

	X	0.0	0.5	1.0	1.5	2.0	2.5
	f(x)	0.5	1.5	2.0	2.5	1.0	0.0
	f'(x)	0.1	0.3	0.6	1.1	2.0	2.2
a) 0.0) b) 1.2		c) 1.65		d) 2.08	e)	2.42

7. If
$$y = \sin e^{x}$$
, then $\frac{d^{2}y}{dx^{2}} =$
a) $\cos e^{x}$ b) $e^{x}\sin e^{x} + e^{2x}\cos e^{x}$
c) $-e^{2x}\sin e^{x} + e^{x}\cos e^{x}$ d) $e^{2x}\sin e^{x} - e^{x}\cos e^{2x}$
e) $e^{x}\cos e^{x}$
8. If $f(x) = \cos^{2}(3-x)$, then $f'(0) =$
a) $-2\cos^{3}$ b) $-2\sin^{3}\cos^{3}$ c) $6\cos^{3}$

	d)	2sin3cos3	e)	6sin3cos3
--	----	-----------	----	-----------

9. Let f(x) be the function given by $f(x) = \sqrt[3]{x^2 + 2}$. What is the slope of the line tangent to f(x) at (5, 3)?

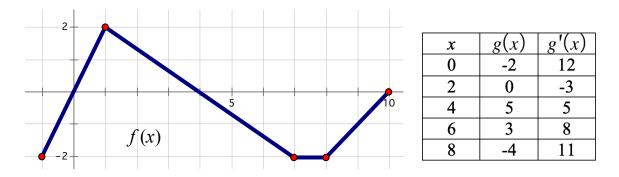
a)
$$-\frac{10}{27}$$
 b) $\frac{10}{27}$ c) $\frac{2}{\sqrt[3]{11^2}}$ d) $\frac{2}{\frac{3}{\sqrt[3]{11^2}}}$

AP Calculus AB '23-24	Name	
Dr. Quattrin – 1 st Period		
Derivative Test		score

Part II: Free Response (35 minutes) – Show all work.

1a.
$$\frac{d}{dx}(\cot^{-1}(e^{5x}))$$

1b.
$$\frac{d}{dx} \left(6e^{\sqrt{1-x^2}} \right)$$



2. Let f(x) be the function whose graph is given above and let g(x) be a differentiable function with selected values for g(x) and g'(x) given on the table above.

a) Find the equation of the line tangent to g(x) at x = 4.

b) Let *K* be the function defined by K(x) = g(f(x)). Find K'(1).

c) Let *M* be the function defined by $M(x) = g(x) \cdot f(x)$. Find M'(4).

d) Let *J* be the function defined by
$$J(x) = \frac{f(2x)}{g(x)}$$
. Find $J'(2)$.

3. If
$$g(x) = \sqrt[3]{4 - x^3}$$
, find $g''(x)$

4. Find the equations of the lines tangent and normal $y = x \ln(5 - x^2)$ at x = 2.

EC. Using the results in #4 above, approximate g(2.8).