AB Calculus '23-24
Dx Apps I Test Form H
No Calculator

1. On which of the following interval(s) is the function $y=-\frac{t^{3}}{3}+3 t^{2}-5 t$ both decreasing and concave down?
a) $(-\infty, 1)$
b) $(1,5)$
c) $(3, \infty)$
d) $(3,5)$
e) $(5, \infty)$
2. Given the functions $f(x)$ and $g(x)$ that are both continuous and differentiable, and that they have values given on the table below.

x	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$g^{\prime}(x)$	$g^{\prime \prime}(x)$
2	-1	2	-8	-5
4	8	-11	4	3
8	-3	-12	-1	4

Then at $x=4, g(x)$ is
a) increasing and concave down
b) increasing and concave up
c) decreasing and concave down
d) decreasing and concave up
3. Suppose $f^{\prime}(x)=\frac{(x+1)^{2}(x-4)^{5}}{\left(x^{2}+4\right)}$. Which of the following statements must be true?
a) $\quad f(x)$ has a point of inflection at $x=-1$
b) $\quad f(x)$ is increasing on $x \in(-\infty,-1)$
c) $\quad f(x)$ has a relative maximum at $x=4$
d) $\quad f(x)$ has a relative minimum at $x=-1$

Graph of f
4. The graph of the function f shown above consists of two line segments. If g is the function defined by $g(x)=\int_{-1}^{x} f(t) d t$, then the maximum value of $g(x)$ occurs at $x=$
a) -2
b) -1
c) 0
d) 1
e) 2
5. The function f is differentiable and increasing for all real numbers x, and the graph of f has exactly one point of inflection. Of the following, which could be the graph of $f^{\prime}(x)$, the derivative of f ?
(A)

(B)

(C)

(D)

(E)

6. The graph below is of $g^{\prime \prime}(x)$, the second derivative of $g(x)$. Which of these statements is false about $g(x)$?

a) $\quad \mathrm{g}(\mathrm{x})$ is concave up on the interval $(0,3)$
b) $\quad g(x)$ has a relative maximum at $x=3$
c) The derivative of $g(x)$ is increasing on $(2,3)$
d) $\quad g(x)$ has a point of inflection at $x=0$
7. Given $g(t)=t \sqrt{t+6}$ on $x \in[0,10]$ is both continuous and differentiable, the Mean Value Theorem guarantees that $g^{\prime}(t)=$
a) 0
b) $2 \sqrt{2}$
c) $\quad-2 \sqrt{2}$
d) -4
e) 4

8. Three graphs labeled I, II, and III are shown above. One is the graph of $f(x)$, one is the graph of $f^{\prime}(x)$, and one is the graph of $f^{\prime \prime}(x)$. Which of the following correctly identities each of the three graphs?
a) $\quad f(x)=\mathrm{I}, f^{\prime}(x)=\mathrm{II}, f^{\prime \prime}(x)=\mathrm{III}$
b) $f(x)=\mathrm{II}, f^{\prime}(x)=\mathrm{I}, f^{\prime \prime}(x)=\mathrm{III}$
c) $\quad f(x)=\mathrm{II}, f^{\prime}(x)=\mathrm{III}, f^{\prime \prime}(x)=\mathrm{I}$
d) $f(x)=\mathrm{III}, f^{\prime}(x)=\mathrm{I}, f^{\prime \prime}(x)=\mathrm{II}$
e) $\quad f(x)=I I I, f^{\prime}(x)=I I, f^{\prime \prime}(x)=\mathrm{I}$
9. Find the absolute minimum value of $y=4 x-x^{2}$ on $0 \leq x \leq 3$.
a) -2
b) 0
c) 2
d) 4
e) 18
10. Suppose $f^{\prime}(x)=(1-x)(3-x)^{4}(x-5)^{3}$. Of the following, which best describes the graph of $f(x)$?
a) $\quad f(x)$ has relative minimum at $x=1$, a relative maximum at $x=3$, and a points of inflection at $x=5$
b) $\quad f(x)$ has relative minimum at $x=3$, a relative maximum at $x=1$, and a points of inflection at $x=5$
c) $\quad f(x)$ has relative minimum at $x=5$, a relative maximum at $x=3$, and a points of inflection at $x=1$
d) $\quad f(x)$ has relative minimum at $x=1$, a relative maximum at $x=5$, and a points of inflection at $x=3$
e) $\quad f(x)$ has relative minimum at $x=3$, a relative maximum at $x=5$, and a points of inflection at $x=1$
11. The graph below gives the graph of $f^{\prime}(x)$, the derivative of $f(x)$. If it is known that $f(-2)=3$, what is the value of $f(4)$?

a) 3
b) 4
c) 6
d) 7
e) 9

12. At what point on the above curve is $\frac{d y}{d x}<0$ and $\frac{d^{2} y}{d x^{2}}<0$
a) M
b) N
c) $\quad \mathrm{P}$
d) $\quad Q$

AB Calculus '23-24
Dx Apps I Test Form H
Calculator allowed
Score \qquad
Directions: Show all work.

1. Let $h(x)=1+\int_{0}^{t} f(t) d t$ on $x \in[-4,4]$. Let the graph of be comprised of one semicircle and two line segments as shown below.

(a) Find $h(2), h^{\prime}(2)$, and $h^{\prime \prime}(2)$.
(b) Find the equation of the line tangent to $h(x)$ at $x=0$.
(c) At what x-values is $h(x)$ decreasing and concave up? Justify your answer.
(d) What is the absolute maximum value of $h(x)$ on the interval $x \in[-4,4]$?
2. The desalting plant at Yuma, AZ, removes alkaline (salt) products from the Colorado River the make the water better for irrigation downstream in Mexico. Data from a Pilot Run of the plant shows that water enters the plant at a rate $W(t)$ as shown on the table below:

t in Month	0	1	2	3	4	5	6	7	8	9	10
$W(t)$ in foot-		2375	3189	3411	3207	2169	2269	2151	2167	3022	2293
acres per month	0	23									

The rate $\mathrm{P}(\mathrm{t})$ of outflow of processed water, in foot-acre per month is modeled by

$$
\mathrm{P}(\mathrm{t})=-0.55 \mathrm{t}^{4}+15 \mathrm{t}^{3}-158 \mathrm{t}^{2}+722 \mathrm{t}+1032
$$

For $0 \leq t \leq 10$. Based on supplies available, not all the water gets processed before returning to the Colorado River.
a) Using a Midpoint Reiman Sum, approximate the volume of water that enters the plant during these ten months.
b) Set up an equation for $\mathrm{U}(\mathrm{t})$ which would define the amount of unprocessed water that exits the plant. Using your answer in part a), approximate $\mathrm{U}(10)$. Indicate units.
c) Approximate $\mathrm{W}^{\prime}(6)$. Using the correct units, explain the meaning of your answer.
d) Assuming $W(t)$ can be modeled by $E(t)=2800+750 \sin \left(\frac{2 \pi}{11} t\right)$, find the time at which there is an absolute maximum amount of unprocessed water flowing through the plant for $0 \leq t \leq 10$. Justify your answer.

