### 1.1 Free Response Solutions

1. $f(x)=x^{2}+3 x-4 \rightarrow f^{\prime}(x)=2 x+3$
2. $y=x^{-2 / 3} \rightarrow \frac{d y}{d x}=-\frac{2}{3} x^{-5 / 3}$
3. $v(r)=\frac{4}{3} \pi r^{3} \rightarrow v^{\prime}(r)=4 \pi r^{2}$
4. $y=\frac{x^{2}+4 x+3}{\sqrt{x}}=x^{3 / 2}+4 x^{1 / 2}+3 x^{-1 / 2}$

$$
\frac{d y}{d x}=\frac{3}{2} x^{1 / 2}+2 x^{-1 / 2}-\frac{3}{2} x^{-3 / 2}=\frac{3 \sqrt{x}}{2}+\frac{2}{\sqrt{x}}-\frac{3}{2 \sqrt{x^{3}}}
$$

9. $z=\frac{A}{y^{10}}+B e^{y}=A y^{-10}+B e^{y}$

$$
z^{\prime}=-10 A y^{-11}+B e^{y}
$$

11. If $f(x)=3 x^{5}-5 x^{3}+3$, find $f^{\prime}(x) f^{\prime}(x)=15 x^{4}-15 x^{2}$

You can see that when $f$ is decreasing the graph of $f^{\prime}$ is below the $x$-axis, i.e. $f^{\prime}$ is negative - if $f$ is increasing the graph of $f^{\prime}$ is above the $x$-axis.

13. $\frac{d}{d x}\left[x^{6}-3 \sqrt[6]{x^{7}}+5^{x}-\frac{1}{\sqrt[3]{x^{5}}}+\frac{1}{2 x}\right]$

$$
=\frac{d}{d x}\left[x^{6}-3 x^{7 / 6}+5^{x}-x^{-5 / 3}+\frac{1}{2} x^{-1}\right]
$$

$$
=6 x^{5}-\frac{7}{2} x^{1 / 6}+5^{x} \ln 5+\frac{5}{3} x^{-8 / 3}-\frac{1}{7} x^{-2}
$$

15. $\frac{d}{d x}\left[(x-1) x^{1 / 2}\right]=\frac{d}{d x}\left[\left(x^{3 / 2}-x^{1 / 2}\right)\right]=\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2}$
16. $\frac{d}{d x}\left[\left(x^{2}-4 x+3\right) x^{5 / 2}\right]=\frac{d}{d x}\left[x^{9 / 2}-4 x^{7 / 2}+3 x^{5 / 2}\right]=\frac{9}{2} x^{7 / 2}-14 x^{5 / 2}+\frac{15}{2} x^{3 / 2}$
17. $\frac{d}{d y}\left(\frac{4 y^{3}-2 y^{2}-5 y}{\sqrt{y}}\right)=\frac{d}{d y}\left(4 y^{5 / 2}-2 y^{3 / 2}-5 y^{1 / 2}\right)=10 y^{3 / 2}-3 y^{1 / 2}-\frac{5}{2} y^{-1 / 2}$
18. $\frac{d}{d w}\left(\frac{7 w^{2}-4 w+1}{5 w^{3}}\right)=\frac{d}{d w}\left(\frac{7}{5} w^{-1}-\frac{4}{5} w^{-2}+\frac{1}{5} w^{-3}\right)=-\frac{7}{5} w^{-2}+\frac{8}{5} w^{-3}-\frac{3}{5} w^{-4}$

### 1.1 Multiple Choice Solutions

1. $f^{\prime}(x)=\frac{3}{2} x^{1 / 2} \rightarrow f^{\prime}(4)=\frac{3}{2}(4 x)^{1 / 2}=3$

The correct answer is $C$.
3. $f(x)=\frac{1}{2} x^{-1}+x^{-2} \rightarrow f^{\prime}(x)=-\frac{1}{2} x^{-2}-2 x^{-3}=-\frac{1}{2 x^{2}}-\frac{2}{x^{3}}$

The correct answer is A.
5. If $h$ is the function defined by $h^{\prime}(x)=e^{5 x}(5)+1 \rightarrow h^{\prime}(0)=e^{0}(5)+1=6$, then $h^{\prime}(0)$ is

The correct answer is D.

### 1.2 Free Response Solutions

1. $\frac{d}{d x}\left[x^{3}+4 x-\pi\right]^{-7}=-7\left(x^{3}+4 x-\pi\right)^{-8}\left(3 x^{2}+4\right)$
2. $f(x)=\sqrt[5]{\left(\frac{1}{x}+2 x+e^{x}\right)^{3}}=\left(\frac{1}{x}+2 x+e^{x}\right)^{3 / 5}$
$f^{\prime}(x)=\frac{3}{5}\left(x^{-1}+2 x+e^{x}\right)^{-2 / 5}\left(-x^{-2}+2+e^{x}\right)=\frac{-3 x^{-2}+6+3 e^{x}}{5\left(x^{-1}+2 x+e^{x}\right)^{2 / 5}}$
3. If $g(2)=3$ and $g^{\prime}(2)=-4$, find $f^{\prime}(2)$ if $f(x)=e^{(g(x))}$.

$$
f^{\prime}(x)=e^{g(x)} \cdot g^{\prime}(x) \Rightarrow f^{\prime}(2)=e^{g(2)} \cdot g^{\prime}(2) \Rightarrow f^{\prime}(2)=e^{3} \cdot-4=-4 e^{3}
$$

7. $\frac{d}{d x}\left[\sqrt{3 x^{2}-4 x+9}\right]=\frac{d}{d x}\left[\left(3 x^{2}-4 x+9\right)^{1 / 2}\right]$

$$
=\frac{1}{2}\left(3 x^{2}-4 x+9\right)^{-1 / 2} \cdot(6 x-4)=\frac{3 x-2}{\sqrt{3 x^{2}-4 x+9}}
$$

9. $y=e^{\sqrt{9-x^{2}}} \rightarrow \frac{d y}{d x}=e^{\sqrt{9-x^{2}}}\left(\frac{d}{d x}\left[\sqrt{9-x^{2}}\right]\right)$
$=e^{\sqrt{9-x^{2}}}\left(\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}\right)(-2 x)=\frac{-x}{\sqrt{9-x^{2}}} e^{\sqrt{9-x^{2}}}$, find $\frac{d y}{d x}$.
10. $v(t)=\sqrt{\left[\left(\frac{E(t)}{3}+3 t\right)^{3 / 7}-4\right]}=\left[\left(\frac{E(t)}{3}+3 t\right)^{3 / 7}-4\right]^{1 / 2}$
$v^{\prime}(t)=\frac{1}{2}\left[\left(\frac{E(t)}{3}+3 t\right)^{3 / 7}-4\right]^{-1 / 2}\left[\frac{3}{7}\left(\frac{E(t)}{3}+3 t\right)^{-4 / 7}\right]\left(\frac{1}{3} E^{\prime}(t)+3\right)$

### 1.2 Multiple Choice Solutions

1. If $y=\left(x^{4}+4\right)^{2}$, then $\frac{d y}{d x}=2\left(x^{4}+4\right)^{1}\left(4 x^{3}\right)=8 x^{3}\left(x^{4}+4\right)^{1}$

The correct answer is E
3. I. True: $\frac{d}{d x}\left(e^{x}+3\right)^{1 / 2}=\frac{1}{2}\left(e^{x}+3\right)^{-1 / 2}\left(e^{x}\right)$
II. True: $\frac{d}{d x}\left(5^{3 x^{2}}\right)=a^{u} \cdot \ln a\left(D_{u}\right)=5^{3 x^{2}} \cdot \ln 5(6 x)=6 x \ln 5\left(5^{3 x^{2}}\right)$
III. True: $\frac{d}{d x}\left(6 x^{3}-\pi+x^{8 / 3}-2 x^{-3}\right)=18 x^{2}+\frac{8}{3} x^{8 / 3}+6 x^{-4}$

The correct answer is E.

### 1.3 Free Response Solutions

1. $y=\sin 4 x$

$$
y^{\prime}=4 \cos 4 x
$$

3. $f(t)=\sqrt[3]{1+\tan t}$

$$
f^{\prime}(t)=\frac{1}{3}(1+\tan t)^{-2 / 3} \cdot \sec ^{2} t=\frac{\sec ^{2} t}{(1+\tan t)^{2 / 3}}
$$

5. $y=a^{3}+\cos ^{3} x$ $y^{\prime}=3 \cos ^{2} x \cdot(-\sin x)=-3 \cos ^{2} x \sin x$
6. $f(x)=\cos (\ln x)$

$$
f^{\prime}(x)=-\sin (\ln x) \cdot \frac{1}{x}=-\frac{\sin (\ln x)}{x}
$$

9. $f(x)=\log _{10}(2+\sin x)$

$$
f^{\prime}(x)=\frac{1}{\ln 10(2+\sin x)} \cdot \cos x=\frac{\cos x}{\ln 10(2+\sin x)}
$$

11. $y=\sin ^{-1}\left(e^{x}\right)$

$$
y^{\prime}=\frac{1}{\sqrt{1-e^{2 x}}} \cdot e^{x}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

13. $y=\tan ^{-1}(\sqrt{x})$

$$
y^{\prime}=\frac{1}{1+x} \cdot \frac{1}{2} x^{-1 / 2}=\frac{1}{2\left(x^{1 / 2}+x^{3 / 2}\right)}
$$

15. $y=\tan ^{-1} x^{2} \cdot y^{\prime}=\frac{1}{1+\left(x^{2}\right)^{2}}(2 x)=\frac{2 x}{1+x^{4}}$
16. $\frac{d}{d x}\left(3 e^{x^{2}+2 x}\right)=3 e^{x^{2}+2 x}(2 x+2)=6(x+1) e^{x^{2}+2 x}$
17. $\frac{d}{d x}\left(\sqrt[3]{16+x^{3}}\right)=\frac{d}{d x}\left(16+x^{3}\right)^{1 / 3}=\frac{1}{3}\left(16+x^{3}\right)^{-2 / 3}\left(3 x^{2}\right)=\frac{x^{2}}{\left(16+x^{3}\right)^{2 / 3}}$
18. $g(x)=\ln \left(x^{2}+16\right) . g^{\prime}(x)=\frac{1}{x^{2}+16}(2 x)=\frac{2 x}{x^{2}+16}$
19. $\frac{d}{d x}(\ln (\sec x))=\frac{1}{\sec x} \cdot \sec x \tan x=\tan x$
20. $f(x)=\ln \left(x^{2}+3\right) \cdot f^{\prime}(x)=\frac{1}{x^{2}+3}(2 x)=\frac{2 x}{x^{2}+3}$
21. $h(x)=\sqrt{x^{2}+5}=\left(x^{2}+5\right)^{1 / 2} \cdot h^{\prime}(x)=\frac{1}{2}\left(x^{2}+5\right)^{-1 / 2}(2 x)=\frac{x}{\left(x^{2}+5\right)^{1 / 2}}$
22. $y=\sin ^{-1}(\cos x) \cdot y^{\prime}=\frac{1}{\sqrt{1-(\cos x)^{2}}}(-\sin x)=\frac{-\sin x}{\sqrt{1-\cos ^{2} x}}=\frac{-\sin x}{\sqrt{\sin ^{2} x}}=-1$
23. $\frac{d}{d x}\left(5 e^{\tan (7 x)}\right)=5 e^{\tan (7 x)}\left(\sec ^{2} 7 x\right) 7=35 e^{\tan (7 x)}\left(\sec ^{2} 7 x\right)$
24. $\frac{d}{d x}\left(\ln ^{3}\left(x^{2}+1\right)\right)=3 \ln ^{2}\left(x^{2}+1\right) \frac{1}{x^{2}+1}(2 x)=\frac{6 x \ln ^{2}\left(x^{2}+1\right)}{x^{2}+1}$
25. $y=\tan ^{2}(3 \theta) \rightarrow \quad y^{\prime}=2 \tan (3 \theta) \cdot \sec ^{2}(3 \theta) \cdot 3=6 \tan (3 \theta) \cdot \sec ^{2}(3 \theta)$
26. $h^{\prime}(1)=\frac{1}{h^{\prime}(g(1))}=\frac{1}{h^{\prime}(2)}=5$

### 1.3 Multiple Choice Solutions

1. If $y=\sin ^{-1} e^{3 \theta}$, then $\frac{d y}{d \theta}=\frac{1}{\sqrt{1-\left(e^{3 \theta}\right)^{2}}}\left(e^{3 \theta}\right)(3)$

The correct answer is E
3. $\quad h^{\prime}(x)=\ln \left(x^{2}\right)\left(\frac{1}{1+x^{2}}\right)+\tan ^{-1}(x)\left(\frac{2}{x}\right) \rightarrow h^{\prime}(1)=\ln (1)\left(\frac{1}{2}\right)+\tan ^{-1}(1)\left(\frac{2}{1}\right)=0+2\left(\frac{\pi}{4}\right)=\frac{\pi}{2}$

The correct answer is C
5. $\quad h^{\prime}(x)=5 e^{5 x}+1 \rightarrow h^{\prime}(0)=5 e^{0}+1=6$

The correct answer is D
7. $g^{\prime}(x)=2 \cos (2 x)(-\sin (2 x))(2)=-4 \sin (2 x) \cos (2 x)$

The correct answer is B
9. $\quad f^{\prime}(x)=\sec ^{2}\left(3^{x}\right)\left(3^{x} \ln 3\right) \rightarrow f^{\prime}(1.042)=3.451$

The correct answer is C .

### 1.4 Free Response Solutions

1. Use the tangent line equation to $g(x)=x^{3}-x^{2}+4 x-4$ at $x=-3$ to approximate the value of $g(-2.9)$

$$
\begin{aligned}
& g(-3)=(-3)^{3}-(-3)^{2}+4(-3)-4=3 \\
& g^{\prime}(x)=3 x^{2}-2 x+4 \Rightarrow m=g^{\prime}(-3)=3(-3)^{2}-2(-3)+4=25
\end{aligned}
$$

Tangent Line: $y-3=25(x+3)$
$g(-2.9) \approx y(-2.9)=25(-2.9+3)+3=5.5$
3. Use the equation of the tangent line to $f(x)=\sqrt{6-x}$ at $x=2$ to approximate $\sqrt{4.1}$. $f(2)=\sqrt{4}=2$

$$
f^{\prime}(x)=\frac{1}{2}(6-x)^{-1 / 2}(-1) \Rightarrow m=f^{\prime}(2)=\frac{-1}{2(6-2)^{1 / 2}}=-\frac{1}{4}
$$

Tangent Line: $y-2=-\frac{1}{4}(x-2)$

$$
\sqrt{4.1}=f(1.9) \approx y(1.9)=-\frac{1}{4}(1.9-2)+2=2.25
$$

5. Find the equation of the tangent line at $x=2$ for $h(x)=\ln \left(9-x^{3}\right)$. Use this to approximate $g(2.1)$

$$
\begin{aligned}
& h(2)=\ln 1=0 \\
& h^{\prime}(x)=\frac{-3 x^{2}}{9-x^{3}} \Rightarrow m=f^{\prime}(2)=\frac{0}{1}
\end{aligned}
$$

Tangent Line: $y=0$

$$
h(2.1) \approx y(2.1)=0
$$

7. Find an equation of the line tangent to the curve $y=x^{4}+2 e^{x}$ at the point $(0,2)$.

$$
y^{\prime}=4 x^{3}+\left.2 e^{x} \Rightarrow y^{\prime}\right|_{x=0}=2
$$

Tangent Line: $y-2=2(x-0)$
9. Use the equation of the tangent line to $f(x)=2 x+\cos (x-2)$ at $x=2$ to approximate $f(1.9)$.

$$
\begin{aligned}
f(2)= & 2(2)+\cos ((2)-2)=4+1=5 \\
& f^{\prime}(x)=2-\sin (2-x) \Rightarrow m=\mid f^{\prime}(2)=2-\sin (0)=2
\end{aligned}
$$

Tangent Line: $y-5=2(x-2)$
$f(1.9) \approx y(1.9)=2((1.9)-2)+5=4.8$
11. Find the equation of the tangent line to $y=x+\cos x$ at the point $(0,1)$.

$$
y^{\prime}=1-\left.\sin x \Rightarrow y^{\prime}\right|_{x=0}=1
$$

Tangent Line: $y-1=1(x-0)$
13. Find the equation of the line tangent to $y=\frac{2}{\pi} x+\cos (4 x)$ when $x=\frac{\pi}{2}$.

$$
\begin{aligned}
y^{\prime}=\frac{2}{\pi}-\left.4 \sin (4 x) \Rightarrow y^{\prime}\right|_{x=\pi / 2} & =\frac{2}{\pi}-4 \sin (2 \pi)=\frac{2}{\pi} \\
\left.y\right|_{x=\pi / 2} & =\frac{2}{\pi} \cdot \frac{\pi}{2}+\cos (2 \pi)=2
\end{aligned}
$$

Tangent Line: $y-2=\frac{2^{x=\pi / 2}}{\pi}\left(x-\frac{\pi}{2}\right)$
15. At what point on the graph of $y=x^{2}-3 x-4$ is the tangent parallel to the line $5 x-y=3$ ?
$y=x^{2}-3 x-4 \rightarrow \frac{d y}{d x}=2 x-3 ; 5 x-y=3 \rightarrow m=5 ; \frac{d y}{d x}=2 x-3=5=m \rightarrow x=4$
$y(4)=(4)^{2}-3(4)-4=0$. The point is $(4,0)$
17. Find the equation of the line tangent to $f(x)=2 x^{3}-9 x^{2}-12 x$ where $f^{\prime}(x)=12$.
$f(x)=2 x^{3}-9 x^{2}-12 x \rightarrow f^{\prime}(x)=6 x^{2}-18 x-12=12 \rightarrow x^{2}-3 x-4=(x+1)(x-4)=0$
$x=-1,4 \rightarrow f(-1)=1 ; \quad f(4)=-64$
$y-1=12(x+1)$ and $y+64=12(x-4)$
19. Find all points on the graph of $y=2 \sin x+\sin ^{2} x$ where the tangent line is horizontal.

$$
\begin{array}{ll}
f^{\prime}(x)=2 \cos x+2 \sin x \cos x=0 & \\
\cos x=0 & \sin x=-1 \\
\qquad x=\left\{ \pm \frac{\pi}{2} \pm 2 \pi n\right. & \text { or } \\
\text { Points where the tangent line is horizontal: } & \left(\frac{\pi}{2} \pm 2 \pi n, 3\right),\left(-\frac{3 \pi}{2} \pm 2 \pi n\right.
\end{array}
$$

21. $x(t)=2 t^{3}-21 t^{2}+60 t+4$

$$
\begin{aligned}
& v(t)=6 t^{2}-42 t+60=0 \\
& a(t)=12 t-42
\end{aligned}
$$

a) $t^{2}-7 t+\underset{-0+}{10}=(t-5)(t-2)=0 \rightarrow t=2$ and $t=5$
b) $t \underset{25}{\longleftrightarrow}$ Left; $v(3)<0$
c) $\quad \begin{array}{r}t(3)=2(3)^{3}-21(3)^{2}+60(3)+4=49 \text {. So the particle is } 49 \text { units to the right of the }\end{array}$ origin at $t=3$.
d) $\quad a(3)=12(3)-42=-6$
e) Speeding up, because $v(3)$ and $a(3)$ are both negative.
23. $y(t)=9 t^{4}-4 t^{3}-240 t^{2}+576 t-48$

$$
\begin{aligned}
& v(t)=36 t^{3}-12 t^{2}-480 t+576 \\
& a(t)=108 t^{2}-24 t-480
\end{aligned}
$$

a) $\quad v(t)=36 t^{3}-12 t^{2}-480 t+576=0$

$$
\rightarrow 3 t^{3}-t^{2}-40 t+48=(t+4)(3 t-4)(t-3)=0 \rightarrow
$$

$$
t=-4,4 / 3,3
$$

b) neither; $v(3)=0$
c) $y(3)=9(3)^{4}-4(3)^{3}-240(3)^{2}+576(3)-48=114$. So, the particle is 114 units above the origin at $t=3$.
d) $a(3)=108(3)^{2}-24(3)-480=420$
e) neither; $v(3)=0$
25. $x(t)=t^{2}-5 t+4 \rightarrow v(t)=2 t-5=0 \rightarrow t=2.5$
$x(2.5)=(2.5)^{2}-5(2.5)+4=-2.25$
27. $x(t)=2 t^{3}-21 t^{2}+60 t+4$

$$
\begin{aligned}
& v(t)=6 t^{2}-42 t+60 \\
& a(t)=12 t-42=0 \rightarrow t=3.5 \\
& x(3.5)=42.5 \\
& v(3.5)=-13.5
\end{aligned}
$$

29a. $v(t)=y^{\prime}(t)=6 t^{2}-2 t-4=0 \rightarrow 3 t^{2}-t-2=0 \rightarrow(3 t+2)(t-1)=0$

$$
t=-\frac{2}{3}, 1 \rightarrow x(1)=-1, a(1)=10, x\left(-\frac{2}{3}\right)=3.630, a\left(-\frac{2}{3}\right)=-10
$$

29b. $a(t)=12 t-2=0 \rightarrow t=\frac{1}{6}$

$$
v\left(\frac{1}{6}\right)=1.315 ; \quad x\left(\frac{1}{6}\right)=-4.167
$$

30. $y(t)=t^{4}-2 t^{2}-8 \rightarrow v(t)=4 t^{3}-4 t \rightarrow a(t)=12 t^{2}-4$
a) $v(t)=4 t^{3}-4 t=0 \rightarrow t=0, \pm 1$.
$x( \pm 1)=-9, a( \pm 1)=8, x(0)=-8, a(0)=-4$
b) $a(t) t=12 t^{2}-4=0 \rightarrow t= \pm \frac{1}{\sqrt{3}}$
$y\left(\frac{1}{\sqrt{3}}\right)=-\frac{77}{9} ; v\left(\frac{1}{\sqrt{3}}\right)=-\frac{8}{3 \sqrt{3}} ; y\left(-\frac{1}{\sqrt{3}}\right)=-\frac{77}{9} ; v\left(-\frac{1}{\sqrt{3}}\right)=\frac{8}{3 \sqrt{3}}$

### 1.4 Multiple Choice Solutions

1. $f^{\prime}(x)=2 e^{4 x^{2}}(8 x)=3$. Graph on calculator to solve: $2 e^{4 x^{2}}(8 x)=3 \rightarrow x=0.168$

The correct answer is A
3. Tangent line: $y-1=f^{\prime}(2)(x-2) \rightarrow y=f^{\prime}(2)(x-2)+1$

$$
.7=f^{\prime}(2)(2.1-2)+1 \rightarrow-.3=f^{\prime}(2)(.1) \rightarrow-3=f^{\prime}(2)
$$

The correct answer is C
5. $\quad f(1)=2$ and $f^{\prime}(x)=\sqrt{x^{2}+3} \rightarrow m=\sqrt{1^{2}+3}=2$.

Tangent line: $y-2=2(x-1)$

$$
\mathrm{f}(0.98) \approx 2(0.98-1)+2=-.04+2=1.96
$$

The correct answer is D
7. $h^{\prime}(x)=2 x-5=-1 \rightarrow x=2 \rightarrow y(2)=-3$
$y+3=-(x-2) \rightarrow y=-x-1$
The correct answer is A.
9. $\quad f^{\prime}(x)=6 x^{5}+5 x^{4}+2 x=-1$. Graph to find the $x$-value and $y$-value.

The correct answer is E
11. $\frac{d y}{d x}=\frac{1}{3}\left(x^{2}-1\right)^{-2 / 3}(2 x) \rightarrow m_{\tan }=\frac{1}{3}\left(3^{2}-1\right)^{-2 / 3}(2(3))=\frac{1}{2} \rightarrow m_{\text {norm }}=-2$

The correct answer is E
13. Graph $v(t)=3 t^{4}-11 t^{2}+9 t-2$ for $-3 \leq t \leq 3$ on a calculator and count the number of zeros.

The correct answer is C
15. $v(t)=2 t-6 \rightarrow 2(t)=2 \neq 0$

The correct answer is E

### 1.5 Free Response Solutions

1. $y^{\prime}=t^{3} \cdot(-\sin t)+\cos t \cdot 3 t^{2}=t^{2}(3 \cos t-t \sin t)$
2. $\frac{d}{d x}\left[x e^{-x}\right]=x\left[e^{-x}(-1)\right]+e^{-x}(1)=-x e^{-x}+e^{-x}=e^{-x}(1-x)$
3. $y^{\prime}=e^{-5 x} \cdot(-\sin 3 x) \cdot 3+\cos 3 x \cdot e^{-5 x} \cdot(-5)=-e^{-5 x}[5 \cos 3 x+3 \sin 3 x]$
4. $\frac{d}{d x}\left(x^{3} \sec x\right)=x^{3} \sec x \tan x+(\sec x)\left(3 x^{2}\right)=x^{2} \sec x(x \tan x+3)$
5. $D_{x}\left(x^{2} \sin x+2 x \cos x\right)$

$$
D_{x}\left(x^{2} \cdot \sin x+2 x \cdot \cos x\right)
$$

$=x^{2} \cdot \cos x+\sin x \cdot 2 x+2 x \cdot-\sin x+\cos x \cdot 2$
$=x^{2} \cos x+2 x \sin x-2 x \sin x+2 \cos x$
$=x^{2} \cos x+2 x \sin x=2 x \sin x+2 \cos x$
$=x^{2} \cos x+2 \cos x$
$=\cos x\left(x^{2}+2\right)$
11. $f(x)=2 \sin ^{2} x \cos ^{2} x$

$$
\begin{aligned}
f^{\prime}(x) & =2\left[\sin ^{2} x \cdot 2 \cos x \cdot-\sin x+\cos ^{2} x \cdot 2 \sin x \cdot \cos x\right] \\
& =2\left[-2 \sin ^{3} x \cos x+2 \cos ^{3} x \sin x\right] \\
& =4 \sin x \cos x\left[-\sin ^{2} x+\cos ^{2} x\right] \\
& =4 \sin x \cos x\left[\cos ^{2} x-\sin ^{2} x\right] \\
& =2 \cdot 2 \sin x \cos x[\cos 2 x] \\
& =2 \sin 2 x \cdot \cos 2 x \\
& =\sin 4 x
\end{aligned}
$$

13. $f^{\prime}(x)=\sec x\left(\sec ^{2} x\right)+\tan x(\sec x \tan x)$

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{4}\right) & =\sec \left(\frac{\pi}{4}\right)\left(\sec ^{2}\left(\frac{\pi}{4}\right)\right)+\tan \left(\frac{\pi}{4}\right)\left(\sec \left(\frac{\pi}{4}\right) \tan \left(\frac{\pi}{4}\right)\right) \\
& =\sqrt{2}\left((\sqrt{2})^{2}\right)+(1)((\sqrt{2})(1))=2 \sqrt{2}+\sqrt{2}=3 \sqrt{2}
\end{aligned}
$$

15. $\frac{d}{d x}\left[\left(x^{2}-2 x-8\right) e^{x}\right]=\left(x^{2}-2 x-8\right) e^{x}+e^{x}(2 x-2)$
$=e^{x}\left(x^{2}-2 x-8+2 x-2\right)=e^{x}\left(x^{2}-10\right)$
16. $\frac{d}{d x}\left[\left(x^{2}-1\right) e^{-1 / 2 x}\right]=\left(x^{2}-1\right)\left[e^{-1 / 2 x}(-1 / 2)\right]+e^{-1 / 2 x}(2 x)$
$=-\frac{1}{2} e^{-1 / 2 x}\left(x^{2}-1+4 x\right)=-\frac{1}{2} e^{-\frac{1}{2} x}\left(x^{2}-4 x-1\right)$
17. $\frac{d}{d x}\left[x^{2} e^{-4 x}\right]=x^{2} e^{-4 x}(-4)+e^{-4 x}(2 x)=-2 x e^{-4 x}\left[x^{2}(2)-1\right]=-2 x e^{-4 x}(2 x-1)$
18. $\quad \frac{d}{d x}\left[e^{x} \sqrt{7-x}\right]=\frac{d}{d x}\left[e^{x}(7-x)^{1 / 2}\right]=e^{x}\left[\frac{1}{2}(7-x)^{-1 / 2}(-1)\right]+(7-x)^{1 / 2} e^{x}$
$=e^{x}\left[\frac{-1}{2(7-x)^{1 / 2}}+(7-x)^{1 / 2}\right]=e^{x}\left[\frac{-1}{2(7-x)^{1 / 2}}+\frac{2(7-x)}{2(7-x)^{1 / 2}}\right]=e^{x}\left[\frac{-1+14-2 x}{2(7-x)^{1 / 2}}\right]=e^{x}\left(\frac{13-2 x}{2(7-x)^{1 / 2}}\right)$
19. $\frac{d}{d x}\left[x \sqrt{4-x^{2}}\right]=x\left(\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2}(-2 x)\right)+\left(4-x^{2}\right)^{1 / 2}(1)=\frac{-x^{2}}{\left(4-x^{2}\right)^{1 / 2}}+\left(4-x^{2}\right)^{1 / 2}=$

$$
\frac{-x^{2}}{\left(4-x^{2}\right)^{1 / 2}}+\frac{\left(4-x^{2}\right)}{\left(4-x^{2}\right)^{1 / 2}}=\frac{4-2 x^{2}}{\left(4-x^{2}\right)^{1 / 2}}
$$

25. $\frac{d}{d x}\left[\left(x^{2}\right) \sqrt{9-x^{2}}\right]=\frac{d}{d x}\left[\left(x^{2}\right)\left(9-x^{2}\right)^{1 / 2}\right]=\left(x^{2}\right)\left[\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}(-2 x)\right]+\left(9-x^{2}\right)^{1 / 2}(2 x)$ $=\left(x^{2}\right)\left[\frac{-2 x}{\left(9-x^{2}\right)^{1 / 2}}\right]+\left(9-x^{2}\right)^{1 / 2}(2 x)=\left(x^{2}\right)\left[\frac{-2 x}{\left(9-x^{2}\right)^{1 / 2}}+\frac{\left(9-x^{2}\right)(2 x)}{\left(9-x^{2}\right)^{1 / 2}}\right]=$ $\frac{-x^{3}}{\left(9-x^{2}\right)^{1 / 2}}+\frac{\left(9-x^{2}\right)(2 x)}{\left(9-x^{2}\right)^{1 / 2}}=\frac{-x^{3}+18 x-2 x^{3}}{\left(9-x^{2}\right)^{1 / 2}}=\frac{18 x-3 x^{3}}{\left(9-x^{2}\right)^{1 / 2}}$
26. $\frac{d y}{d x}=\left(4 x^{5}-3\right)^{7} 5\left(7 x^{2}+1\right)^{4}(14 x)+\left(7 x^{2}+1\right)^{5} 7\left(4 x^{5}-3\right)^{6}\left(20 x^{4}\right)=$ $=35 x\left(4 x^{5}-3\right)^{6}\left(7 x^{2}+1\right)^{4}\left[2\left(4 x^{5}-3\right)+4 x^{3}\left(7 x^{2}+1\right)\right]=$ $=35 x\left(4 x^{5}-3\right)^{6}\left(7 x^{2}+1\right)^{4}\left[8 x^{5}-6+28 x^{5}+4 x^{3}\right]=$ $=35 x\left(4 x^{5}-3\right)^{6}\left(7 x^{2}+1\right)^{4}\left\lceil 36 x^{5}+4 x^{3}-6\right\rceil$
27. $\frac{d y}{d x}=\left(3 x^{2}-4\right)^{3} 2\left(6 x^{2}+7\right)(12 x)+\left(6 x^{2}+7\right)^{2} 3\left(3 x^{2}-4\right)^{2}(6 x)=$

$$
6 x\left(3 x^{2}-4\right)^{2}\left(6 x^{2}+7\right)\left[\left(3 x^{2}-4\right)(4)+\left(6 x^{2}+7\right) 3\right]=
$$

$$
6 x\left(3 x^{2}-4\right)^{2}\left(6 x^{2}+7\right)\left[12 x^{2}-16+18 x^{2}+21\right]=
$$

$$
6 x\left(3 x^{2}-4\right)^{2}\left(6 x^{2}+7\right)\left[30 x^{2}+5\right]=
$$

$$
30 x\left(3 x^{2}-4\right)^{2}\left(6 x^{2}+7\right)\left(6 x^{2}+1\right)
$$

31. $y^{\prime}=e^{x \cos x}[x \cdot(-\sin x)+\cos x]=e^{x \cos x}[\cos x-x \sin x]$
32. Find the equation of the line tangent to $y=x^{2} e^{-x}$ at the point $(1,1 / e)$.

$$
\begin{aligned}
& y^{\prime}=x^{2} \cdot e^{-x} \cdot(-1)+e^{-x} \cdot 2 x \quad m=\left.y^{\prime}\right|_{x=1}=-\frac{1}{e}+\frac{2}{e}=\frac{1}{e} \\
& y-\frac{1}{\rho}=\frac{1}{\rho}(x-1)
\end{aligned}
$$

35. $f(3)=(3) \sqrt[4]{7+3^{2}}=6$
$f^{\prime}(x)=x\left\lceil\frac{1}{4}\left(7+x^{2}\right)^{-3 / 4}(2 x)\right\rceil+\sqrt[4]{7+x^{2}}(1) \rightarrow m=f^{\prime}(3)=\frac{9}{2}+2=\frac{13}{2}$
$y+6=\frac{13}{2}(x-3)$
36. $\left.y\right|_{x=e}=e \sin \left(\frac{\pi}{2} \ln e\right)=e \Rightarrow(e, e) \quad y^{\prime}=x \cos \left(\frac{\pi}{2} \ln x\right) \cdot \frac{\pi}{2} \cdot \frac{1}{x}+\sin \left(\frac{\pi}{2} \ln x\right)$

$$
\left.y^{\prime}\right|_{x=e}=e \cos \left(\frac{\pi}{2} \ln e\right) \cdot \frac{\pi}{2} \cdot \frac{1}{e}+\sin \left(\frac{\pi}{2} \ln e\right)=1
$$

Tangent line: $y-e=1(x-e) \quad$ Normal line: $y-e=-1(x-e)$
39. $\left.\quad y\right|_{x=4 / \pi}=\frac{4}{\pi} \sin \left(\frac{\pi}{4}\right)=\frac{4}{\pi \sqrt{2}}=2 \sqrt{2} \pi \Rightarrow\left(\frac{4}{\pi}, 2 \sqrt{2} \pi\right)$

$$
y^{\prime}=x \cos \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)+\sin \left(\frac{1}{x}\right)
$$

$$
\left.y^{\prime}\right|_{x=4 / \pi}=\frac{4}{\pi} \cos \left(\frac{\pi}{4}\right) \cdot\left(-\frac{\pi^{2}}{16}\right)+\sin \left(\frac{\pi}{4}\right)=-\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{-\pi+4}{4 \sqrt{2}}=\frac{\sqrt{2}(-\pi+4)}{8}
$$

Tangent line: $\quad y-2 \sqrt{2} \pi=\frac{\sqrt{2}(-\pi+4)}{8}(x-4 / \pi)$
Normal line: $\quad y-2 \sqrt{2} \pi=-\frac{4 \sqrt{2}}{-\pi+4}(x-4 / \pi) \Rightarrow y-2 \sqrt{2} \pi=\frac{4 \sqrt{2}}{\pi-4}(x-4 / \pi)$
41. $y^{\prime}=x \cdot \frac{-1}{\sqrt{1-x^{2}}}+\cos ^{-1} x-\frac{1}{2}(1-x)^{-1 / 2} \cdot(-2 x)=\frac{-x}{\sqrt{1-x^{2}}}+\frac{x}{\sqrt{1-x^{2}}}+\cos ^{-1} x=\cos ^{-1} x$
43. $y^{\prime}=\frac{-1}{\sqrt{1-x^{2}}}+x \cdot \frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x)+\sqrt{1-x^{2}}=\frac{-1}{\sqrt{1-x^{2}}}+\frac{-x^{2}}{\sqrt{1-x^{2}}}+\frac{1-x^{2}}{\sqrt{1-x^{2}}}=\frac{-2 x^{2}}{\sqrt{1-x^{2}}}$
45. $\frac{d y}{d x}=\frac{3}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}}\left(\frac{1}{3}\right)+\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}(-2 x)=\frac{1}{\sqrt{1-\frac{x^{2}}{9}}}+\frac{-x}{\left(9-x^{2}\right)^{1 / 2}}=$

$$
\frac{3}{\left(9-x^{2}\right)^{1 / 2}}+\frac{-x}{\left(9-x^{2}\right)^{1 / 2}}=\frac{3-x}{\left(9-x^{2}\right)^{1 / 2}}
$$

### 1.5 Multiple Choice Solutions

1. $\frac{d y}{d x}=x^{2}(-\sin 2 x)(2)+\cos 2 x(2 x)=-2 x(\cos 2 x-x \sin 2 x)$

The correct answer is D
3. $f^{\prime}(x)=x \sec ^{2} x+(\tan x)(1)$
$f^{\prime}(x)=x \sec ^{2} x+(\tan x)(1)$
The correct answer is B
7. I. False: $\frac{d}{d x}(x \tan x)=x \sec ^{2} x+\tan x(1)$
II. True: $\frac{d}{d x}(x \ln x)=x\left(\frac{1}{x}\right)+(\ln x)(1)=1+\ln x$
III. False: $\frac{d}{d x}(1-x)^{1 / 2}=\frac{1}{2}(1-x)^{-1 / 2}(-1)=\frac{-1}{2 \sqrt{1-x}}$

The correct answer is B

### 1.6 Free Response Solutions

1. $\frac{d y}{d x}=\frac{\left(x^{2}-4\right)(2 x)-\left(x^{2}-3\right)(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{2 x^{3}-8 x-2 x^{3}+6 x}{\left(x^{2}-4\right)^{2}}=\frac{-2 x}{\left(x^{2}-4\right)^{2}}$
2. $f^{\prime}(x)=\frac{\left(x^{2}-x-3\right)(2 x+2)-\left(x^{2}+2 x-8\right)(2 x-1)}{\left(x^{2}-x-3\right)^{2}}$
$=\frac{2 x^{3}-2 x^{2}-6 x+2 x^{2}-2 x-6-\left(2 x^{3}+4 x^{2}-16 x-x^{2}-2 x+8\right)}{\left(x^{2}-x-3\right)^{2}}=\frac{-3 x^{2}+10 x-14}{\left(x^{2}-x-3\right)^{2}}$
3. $\frac{d}{d x}\left(\frac{3 x+3}{x^{3}+1}\right)=\frac{d}{d x}\left[\frac{3(x+1)}{(x+1)\left(x^{2}-x+1\right)}\right]=\frac{d}{d x}\left[\frac{3}{x^{2}-x+1}\right]$
$=\frac{\left(x^{2}-x+1\right)(0)-(3)(2 x-1)}{\left(x^{2}-x+1\right)^{2}}=\frac{-6 x+3}{\left(x^{2}-x+1\right)}$
4. $\frac{d}{d x}\left[\frac{x^{5}-12 x^{3}-19 x}{3 x^{3}}\right]=\frac{d}{d x}\left[\frac{1}{3} x^{2}-4-19 x^{-2}\right]=\frac{1}{9} x^{3}-4 x+19 x^{-1}=\frac{d}{d x}\left[\frac{x^{4}-12 x^{2}-19}{3 x^{2}}\right]$
5. $\frac{d}{d x}\left(\frac{\tan x+5}{\sin x}\right)=\frac{(\sin x)\left(\sec ^{2} x\right)-(\tan x+5)(\cos x)}{\sin x}=\left(\sec ^{2} x\right)-(\tan x+5)(\cot x)=$ $\sec ^{2} x-1-5 \cot x=\tan ^{2} x-5 \cot x$
6. $\frac{d y}{d x}=\frac{(\cos x-3) \sec ^{2} x-\tan x(-\sin x)}{(\cos x-3)^{2}}=\frac{\sec x-3 \sec ^{2} x+\sin x \tan x}{(\cos x-3)^{2}}$
7. $y=\frac{\tan x-1}{\sec x}$
$y^{\prime}=\frac{\sec x \cdot \sec ^{2} x-(\tan x-1) \cdot \sec x \tan x}{\sec ^{2} x}=\frac{\sec ^{2} x-(\tan x-1) \tan x}{\sec x}=\frac{\sec ^{2} x-\tan ^{2} x+\tan x}{\sec x}$
Recall $1=\sec ^{2} x-\tan ^{2} x$, so substitute into numerator:
$y^{\prime}=\frac{1+\tan x}{\sec x}$
8. $f^{\prime}(x)=\frac{(\tan x+1) \sec ^{2} x+\tan x \sec ^{2} x}{(\tan x+1)^{2}} \rightarrow f^{\prime}\left(\frac{\pi}{4}\right)=\frac{(1+1)(\sqrt{2})^{2}+(1)(\sqrt{2})^{2}}{(1+1)^{2}}=\frac{3}{2}$
9. $y^{\prime}=\frac{\left(r^{2}+1\right)^{1 / 2}-r \cdot 1 / 2\left(r^{2}+1\right)^{-1 / 2} \cdot 2 r}{r^{2}+1}=\frac{\left(r^{2}+1\right)^{-1 / 2}\left[r^{2}+1-r^{2}\right]}{r^{2}+1}=\frac{1}{\left(r^{2}+1\right)^{3 / 2}}$
10. At $x=-1$, the point on the function is $\left(-1, \frac{2}{17}\right)$ $\left.\frac{d y}{d x}=\frac{\left(x^{2}+16\right)(-2)-(-2 x)(2 x)}{\left(x^{2}+16\right)^{2}} \rightarrow \frac{d y}{d x}\right]_{r=-1}=\frac{17(-2)-(2)(-2)}{(17)^{2}}=-\frac{38}{289}$
The equation of the tangent line is the line $y-\frac{2}{17}=-\frac{38}{289}(x+1)$
The normal line is the line $y-\frac{2}{17}=\frac{289}{38}(x+1)$
11. At $x=-1$, the point on the function is $\left(-1,-\frac{3}{2}\right)$

$$
\left.\frac{d y}{d x}=\frac{\left(x^{2}+1\right)(-3)-(-3 x)(2 x)}{\left(x^{2}+1\right)^{2}} \rightarrow \frac{d y}{d x}\right]_{x=-1}=\frac{2(-6)-(3)(-2)}{(2)^{2}}=0
$$

The equation of the tangent line is the line $y=-\frac{3}{2}$
The normal line is the line $x=-1$

### 1.6 Multiple Choice Solutions

1. $f^{\prime}(x)=\frac{\sin \left(x^{2}\right) e^{x}-\left(1+e^{x}\right) \cos \left(x^{2}\right)(2 x)}{\left(\sin \left(x^{2}\right)\right)^{2}} ; f^{\prime}(0)=\frac{\sin (0) e^{0}-\left(1+e^{0}\right) \cos (0)(0)}{(\sin (0))^{2}}=\frac{0}{0}$

The correct answer is E

$$
\text { 3. } \frac{d y}{d x}=\frac{(3 x+2)(-2)-(3-2 x)(3)}{(3 x+2)^{2}}=\frac{(-6 x-4)-(9-6 x)}{(3 x+2)^{2}}=\frac{-13}{(3 x+2)^{2}}
$$

The correct answer is D

$$
\text { 5. } \frac{d y}{d x}=\frac{(4 x-3)(3)-(3 x+4)(4)}{(4 x-3)^{2}} \rightarrow m_{\tan }=\frac{(4-3)(3)-(3+4)(4)}{(4-3)^{2}}=-25 \rightarrow m_{\text {norm }}=\frac{1}{25}
$$

$$
y-7=\frac{1}{25}(x-1) \rightarrow 25 y-175=x-1 \text { is }
$$

The correct answer is D

### 1.7 Free Response Solutions

1. $f(x)=x^{5}+6 x^{2}-7 x$

$$
\begin{aligned}
& f^{\prime}(x)=5 x^{4}+12 x-7 \\
& f^{\prime \prime}(x)=20 x^{3}+12
\end{aligned}
$$

3. $y=\left(x^{3}+1\right)^{2 / 3}$

$$
\begin{aligned}
& y^{\prime}=\frac{2}{3}\left(x^{3}+1\right)^{-1 / 3} \cdot 3 x^{2}=\frac{2 x^{2}}{\left(x^{3}+1\right)^{1 / 3}} \\
& y^{\prime \prime}=\frac{\left(x^{3}+1\right)^{1 / 3} \cdot 4 x-2 x^{2} \cdot 1 / 3\left(x^{3}+1\right)^{-2 / 3} \cdot 3 x^{2}}{\left(x^{3}+1\right)^{2 / 3}}=\frac{\left(x^{3}+1\right)^{-2 / 3}\left[\left(x^{3}+1\right) \cdot 4 x-2 x^{4}\right]}{\left(x^{3}+1\right)^{2 / 3}} \\
& =\frac{4 x^{4}+4 x-2 x^{4}}{\left(x^{3}+1\right)^{4 / 3}}=\frac{2 x\left(x^{3}+2\right)}{\left(x^{3}+1\right)^{4 / 3}}
\end{aligned}
$$

5. $g(t)=t^{3} e^{5 t}$

$$
\begin{aligned}
g^{\prime}(t) & =t^{3} \cdot e^{5 t} \cdot 5+e^{5 t} \cdot 3 t^{2}=t^{2} e^{5 t}[5 t+3] \\
g^{\prime \prime}(t) & =t^{2} e^{5 t} \cdot 5+t^{2}(5 t+3) \cdot e^{5 t} \cdot 5+e^{5 t} \cdot(5 t+3) \cdot 2 t \\
& =t e^{5 t}[5 t+5 t(5 t+3)+2(5 t+3)] \\
& =t e^{5 t}\left[25 t^{2}+30 t+6\right\rceil
\end{aligned}
$$

7. $y=\sin ^{3} x$

$$
\begin{aligned}
& y^{\prime}=3 \sin ^{2} x \cos x \\
& y^{\prime \prime}=3\left[\sin ^{2} x \cdot-\sin x+\cos x \cdot 2 \sin x \cos x\right\rceil=3 \sin x\left[2 \cos ^{2} x-\sin ^{2} x\right\rceil
\end{aligned}
$$

9. $\frac{d^{2}}{d x^{2}}\left[5 x^{4}+9 x^{3}-4 x^{2}+x-8\right]$

$$
\begin{aligned}
& =\frac{d}{d x}\left[-20 x^{3}+27 x^{2}-8 x+1\right] \\
& =-60 x^{2}+54 x-8
\end{aligned}
$$

11. $y=\cos x^{2}$, find $y^{\prime \prime}$

$$
\begin{aligned}
& \frac{d y}{d x}=-\sin x^{2}(2 x)=-2 x \sin x^{2} \\
& \frac{d^{2} y}{d x^{2}}=-2 x\left[\cos x^{2}(2 x)\right]+\sin x^{2}(-2)=-2\left[2 x^{2} \cos x^{2}+\sin x^{2}\right]
\end{aligned}
$$

13. $y=\sec 3 x$, find $\frac{d^{2} y}{d x^{2}}$

$$
\begin{aligned}
& \frac{d y}{d x}=\sec 3 x \tan 3 x(3)=3 \sec 3 x \tan 3 x \\
& \frac{d^{2} y}{d x^{2}}=3 \sec 3 x\left(\sec ^{2} 3 x(3)\right)+\tan 3 x(3 \sec 3 x \tan 3 x(3))=9 \sec 3 x\left(\sec ^{2} 3 x+\tan ^{2} 3 x\right)
\end{aligned}
$$

15. $f(x)=\ln \left(x^{2}+3\right)$, find $f^{\prime \prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x}{x^{2}+3} \\
& f^{\prime \prime}(x)=\frac{\left(x^{2}+3\right)(2)-(2 x)(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{\left(2 x^{2}+6\right)-\left(4 x^{2}\right)}{\left(x^{2}+3\right)^{2}}=\frac{-2\left(x^{2}-3\right)}{\left(x^{2}+3\right)^{2}}
\end{aligned}
$$

17. $h(x)=\sqrt{x^{2}+5}$, find $h^{\prime \prime}(x)$

$$
\begin{aligned}
& h(x)=\sqrt{x^{2}+5}=\left(x^{2}+5\right)^{1 / 2} \\
& h^{\prime}(x)=\sqrt{x^{2}+5}=\frac{1}{2}\left(x^{2}+5\right)^{-1 / 2}(2 x)=\frac{x}{\left(x^{2}+5\right)^{1 / 2}} \\
& h^{\prime \prime}(x)=\frac{\left(x^{2}+5\right)^{1 / 2}(1)-x \cdot \frac{x}{\left(x^{2}+5\right)^{1 / 2}}}{\left(x^{2}+5\right)^{1}}
\end{aligned}
$$

$$
=\frac{\left(x^{2}+5\right)^{1}-x^{2}}{\left(x^{2}+5\right)^{3 / 2}}
$$

$$
=\frac{5}{\left(x^{2}+5\right)^{3 / 2}}
$$

19. $y=\frac{x^{2}-3}{x^{2}-10}$, find $\frac{d^{2} y}{d x^{2}}$
$\frac{d y}{d x}=\frac{\left(x^{2}-10\right)(2 x)-\left(x^{2}-3\right)(2 x)}{\left(x^{2}-10\right)^{2}}=\frac{(2 x)\left[\left(x^{2}-10\right)-\left(x^{2}-3\right)\right]}{\left(x^{2}-10\right)^{2}}=\frac{-14 x}{\left(x^{2}-10\right)^{2}}$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\left(x^{2}-10\right)^{2}(-14)-(-14 x) 2\left(x^{2}-10\right)^{1}(2 x)}{\left(x^{2}-10\right)^{4}} \\
& =\frac{-14\left(x^{2}-10\right)\left[\left(x^{2}-10\right)-\left(4 x^{2}\right)\right]}{\left(x^{2}-10\right)^{4}} \\
& =\frac{-14\left(-3 x^{2}-10\right)}{\left(x^{2}-10\right)^{3}}=\frac{14\left(3 x^{2}+10\right)}{\left(x^{2}-10\right)^{3}}
\end{aligned}
$$

21. $y=x^{3}+x^{2}-7 x-15$

$$
\begin{aligned}
& y^{\prime}=3 x^{2}+2 x-7 \\
& y^{\prime \prime}=6 x+2
\end{aligned}
$$

23. $\frac{d y}{d x}=\frac{\left(x^{2}+4\right)(-4)-(-4 x)(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{\left(-4 x^{2}-16\right)-\left(-8 x^{2}\right)}{\left(x^{2}+4\right)^{2}}=\frac{4 x^{2}-16}{\left(x^{2}+4\right)^{2}}$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\left(x^{2}+4\right)^{2}(8 x)-\left(4 x^{2}-16\right) 2\left(x^{2}+4\right)^{1}(2 x)}{\left(x^{2}+4\right)^{4}} \\
& =\frac{\left(x^{2}+4\right)(8 x)-\left(4 x^{2}-16\right)(4 x)}{\left(x^{2}+4\right)^{3}} \\
& =\frac{\left(8 x^{3}+32 x\right)-\left(16 x^{3}-64\right)}{\left(x^{2}+4\right)^{3}} \\
& =\frac{\left(-8 x^{3}+96 x\right)}{\left(x^{2}+4\right)^{3}}=\frac{-8 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}
\end{aligned}
$$

25. $y=x \sqrt{8-x^{2}}=x\left(8-x^{2}\right)^{1 / 2}$

$$
\begin{aligned}
\frac{d y}{d x} & =x \cdot \frac{1}{2} \cdot\left(8-x^{2}\right)^{-1 / 2}(-2 x)+\left(8-x^{2}\right)^{1 / 2}(1) \\
& =\frac{-x^{2}}{\left(8-x^{2}\right)^{1 / 2}}+\left(8-x^{2}\right)^{1 / 2} \\
& =\frac{-x^{2}+\left(8-x^{2}\right)^{1}}{\left(8-x^{2}\right)^{1 / 2}}=\frac{8-2 x^{2}}{\left(8-x^{2}\right)^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\left(8-x^{2}\right)^{1 / 2}(-4 x)-\left(8-2 x^{2}\right) \frac{-x}{\left(8-x^{2}\right)^{1 / 2}}}{\left(8-x^{2}\right)^{1}} \\
& =\frac{\left(8-x^{2}\right)^{1}(-4 x)-(-x)\left(8-2 x^{2}\right)}{\left(8-x^{2}\right)^{3 / 2}} \\
& =\frac{2 x^{3}-24 x}{\left(8-x^{2}\right)^{3 / 2}}=\frac{(2 x)\left(x^{2}-24\right)}{\left(8-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

27. $y=x e^{-x}$

$$
\begin{aligned}
& \frac{d y}{d x}=x e^{-x}(-1)+e^{-x}(1)=e^{-x}(x+1) \\
& \frac{d^{2} y}{d x^{2}}=e^{-x}(1)+(x+1) e^{-x}(-1)=e^{-x}(x-2)
\end{aligned}
$$

29. $y=\frac{x}{x^{2}-9}$

$$
\frac{d y}{d x}=\frac{\left(x^{2}-9\right)(1)-(x)(2 x)}{\left(x^{2}-9\right)^{2}}=\frac{-x^{2}-9}{\left(x^{2}-9\right)^{2}}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\left(x^{2}-9\right)^{2}(-2 x)-\left(-x^{2}-9\right) 2\left(x^{2}-9\right)^{1}(2 x)}{\left(x^{2}-9\right)^{4}}
$$

$$
=\frac{\left(x^{2}-9\right)(-2 x)-\left(-x^{2}-9\right) 2(2 x)}{\left(x^{2}-9\right)^{3}}
$$

$$
=\frac{\left(-2 x^{3}+18 x\right)-\left(-4 x^{3}-36 x\right)}{\left(x^{2}-9\right)^{3}}
$$

$$
=\frac{\left(2 x^{3}+54 x\right)}{\left(x^{2}-9\right)^{3}}=\frac{2 x\left(x^{2}+27\right)}{\left(x^{2}-9\right)^{3}}
$$

### 1.7 Multiple Choice Solutions

1. $h^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$
$h^{\prime \prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime \prime}(x)+f^{\prime}(x) \cdot g^{\prime \prime}(f(x)) \cdot f^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime \prime}(x)+\left[f^{\prime}(x)\right]^{2} \cdot g^{\prime \prime}(f(x))$

The correct answer is E
3. $\frac{d y}{d x}=\frac{1}{\cos x}(-\sin x)=-\tan x$
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}[-\tan x]=-\sec ^{2} x$
The correct answer is B
5. $\quad \frac{d y}{d x}=e^{x^{2}}(2 x) \rightarrow \frac{d^{2} y}{d x^{2}}=e^{x^{2}}(2)+2 x\left(e^{x^{2}}(2 x)\right)=2 e^{x^{2}}\left(1+2 x^{2}\right)$

The correct answer is B

### 1.8 Free Response Homework

1a. $\quad g^{\prime}(x)=3[f(x)]^{2} \cdot f^{\prime}(x) \Rightarrow g^{\prime}(2)=3[f(2)]^{2} \cdot f^{\prime}(2)=3 \cdot 1^{2} \cdot 7=21$
1b. $\quad h^{\prime}(x)=f^{\prime}\left(x^{3}\right) \cdot 3 x^{2} \Rightarrow h^{\prime}(2)=f^{\prime}\left(2^{3}\right) \cdot 3 \cdot 2^{2}=12 f^{\prime}(8)=12 \cdot-3=-36$
3. $\quad h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
$h^{\prime}(2)=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(8) \cdot(1)=(-12) \cdot(1)=-12$
5. $\quad p^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$
$p^{\prime}(4)=f^{\prime}(f(4)) \cdot f^{\prime}(4)=f^{\prime}(2) \cdot(8)=(-2) \cdot(8)=-16$
7. $\quad P_{1}^{\prime}(8)=f(8) g^{\prime}(8)+g(8) f^{\prime}(8)=8(-4)+(2)(-12)=-56$
9. $\quad P_{3}^{\prime}(4)=f(4) g^{\prime}(2)\left(\frac{1}{2}\right)+g(2) f^{\prime}(8)(2)=2(8)\left(\frac{1}{2}\right)+(-2)(8)=-8$
11. $Q_{2}^{\prime}(8)=\frac{f(8) g^{\prime}(8)-g(8) f^{\prime}(8)}{[f(8)]^{2}}=\frac{8(4)-(4(-12))}{8^{2}}=\frac{80}{64}=\frac{5}{4}$
13. $\quad Q_{4}^{\prime}(4)=\frac{f(8) g^{\prime}(2)\left(\frac{1}{2}\right)-g(2) f^{\prime}(8)(2)}{\left[f(8) 7^{2}\right.}=\frac{8(1)\left(\frac{1}{2}\right)-(8)(-12)(2)}{8^{2}}=\frac{196}{64}=\frac{49}{16}$
15. $\quad v^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
v^{\prime}(4)=g^{\prime}\left(\frac{2}{3}\right) \cdot f^{\prime}(4)=\left(-\frac{2}{3}\right) \cdot\left(\frac{2}{3}\right)=-\frac{4}{9}
$$

17. $t^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
t^{\prime}(8)=f^{\prime}(f(8)) \cdot f^{\prime}(8)=f^{\prime}(0) \cdot(-3)=1 / 2 \cdot(d n e)=d n e
$$

19. $\quad P_{1}^{\prime}(8)=f(8) g^{\prime}(8)+g(8) f^{\prime}(8)=0\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)($ dne $)=$ dne
20. $\quad P_{3}{ }^{\prime}(2)=f(2) g^{\prime}(1)\left(\frac{1}{2}\right)+g(1) f^{\prime}(2)(2)=-\frac{2}{3}($ dne $)\left(\frac{1}{2}\right)+(2)\left(\frac{2}{3}\right)=d n e$
21. $Q_{2}{ }^{\prime}(8)=\frac{f(8) g^{\prime}(8)-g(8) f^{\prime}(8)}{\lceil f(8)\rceil^{2}}=\frac{0\left(-\frac{2}{3}\right)-\left(-\frac{2}{3}\right)(\text { dne })}{0^{2}}=d n e$
22. $Q_{4}^{\prime}(4)=\frac{f(8) g^{\prime}(2)\left(\frac{1}{2}\right)-g(2) f^{\prime}(8)(2)}{\left\lceil f(8) 7^{2}\right.}=\frac{0(0)\left(\frac{1}{2}\right)-(2)(\text { dne })(2)}{0^{2}}=d n e$

27a. $g(4)=3 ; g^{\prime}(4)=6 \rightarrow y-3=6(x-4)$
27b. $\quad K^{\prime}(8)=\mathrm{g}^{\prime}(g(8)) \mathrm{g}^{\prime}(8)=\mathrm{g}^{\prime}(4) \mathrm{g}^{\prime}(8)=6(8)=48$
27c. $\quad M^{\prime}(4)=g(4) f^{\prime}(4)+f(4) g^{\prime}(4)=3(1)+(1)(6)=9$
27d. $\quad J^{\prime}(4)=\frac{f(1) g^{\prime}(2)(2)-g(2) f^{\prime}(1)}{\left\lceil 1(1) 7^{2}\right.}=\frac{(-1)(3)(2)-1(0)}{(-1)^{2}}=-6$

29a. $\quad h\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)+e^{\cos \left(\frac{3 \pi}{2}\right)}=1+e^{0}=2$
$h^{\prime}(x)=\cos (x)+e^{\cos 3 x}(\sin 3 x)(-3)$
$m=h^{\prime}\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)+e^{\cos \frac{3 \pi}{2}}\left(\sin \frac{3 \pi}{2}\right)(3)=0+(1)(-1)(3)=3$
$y-2=3\left(x-\frac{\pi}{2}\right)$
29b. $\quad K^{\prime}\left(\frac{\pi}{2}\right)=f^{\prime}\left(h\left(\frac{\pi}{2}\right)\right) \cdot h^{\prime}\left(\frac{\pi}{2}\right)=f^{\prime}(2) \cdot h^{\prime}\left(\frac{\pi}{2}\right)=\frac{2}{3} \cdot 3=2$

29c. $\quad \mathrm{M}^{\prime}(2)=g(4) \cdot f^{\prime}(2)+f(2) \cdot g^{\prime}(4) \cdot(2)=3\left(\frac{2}{3}\right)+\left(-\frac{2}{3}\right)(-2)(2)=\frac{14}{3}$
29d. $J^{\prime}(4)=\frac{f(4) g^{\prime}(4)-g(4) f^{\prime}(4)}{[f(4)]^{2}}=\frac{\left(\frac{2}{3}\right)(2)-3\left(\frac{2}{3}\right)}{(2 / 3)^{2}}=\frac{1 / 3}{4 / 9}=\frac{3}{4}$
31. See AP Central

### 1.8 Multiple Choice Homework

1. $g^{\prime}(1.5)=f^{\prime}(f(1.5)) f^{\prime}(1.5)=f^{\prime}(2.5) f^{\prime}(1.5)=0(.6)=0$

The correct answer is A
3. $\quad h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \rightarrow$
$h^{\prime}(2)=\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{(g(2))^{2}}=\frac{(8)(-5)-(1)(7)}{(8)^{2}}=\frac{-47}{64}$

The correct answer is D
5. $\quad \mathrm{B}^{\prime}(1)=f(1) g^{\prime}(1)+g(1) f^{\prime}(1)=\left(\frac{3}{2}\right)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)(1)=\frac{5}{6}$

The correct answer is A
7. $\quad B^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)=f^{\prime}(-2) f^{\prime}(1)=\frac{1}{3}\left(-\frac{1}{2}\right)=-\frac{1}{6}$

The correct answer is B

## Derivative Review Practice Test Solutions

1. $y=\ln (\sin x) \rightarrow \frac{d y}{d x}=\frac{1}{\sin x}(\cos x)=\frac{\cos x}{\sin x}=\cot x$.

So, the correct answer is D
3. $\quad h(x)=g(g(x))=g^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
h^{\prime}(8)=g^{\prime}(g(8)) \cdot g^{\prime}(8)=g^{\prime}(2) \cdot g^{\prime}(8)=(1) \cdot(4)=4
$$

So, the correct answer is D.
5. $\quad f(2)=4$ and $m=f^{\prime}(2)=\sqrt{2^{3}+1}=\sqrt{9}=3$.

Tangent line: $y-4=3(x-2)$
$f(2.2) \approx y(2.2)=3(2.2-2)+4=4.6$.
So, the correct answer is D
7. $\quad \begin{aligned} & y=\frac{\left(x^{2}-3\right)^{3}}{(5 x-9)^{2}} \rightarrow \frac{d y}{d x}=\frac{(5 x-9)^{2} 3\left(x^{2}-3\right)^{2}(2 x)-\left(x^{2}-3\right)^{3} 2(5 x-9)(5)}{(5 x-9)^{4}} \\ & \left.\frac{d y}{d x}\right|_{r=0}=\frac{(5(2)-9)^{2} 3\left((2)^{2}-3\right)^{2}(2(2))-\left((2)^{2}-3\right)^{32} 2(5(2)-9)(5)}{(5(2)-9)^{4}}=\frac{(1)(3)(1)(4)-(1)(2)(1)(5)}{1^{4}}=12-10=2\end{aligned}$

So, the correct answer is D
9. $D_{r}\left[e^{3 x^{2}} \cos 4 x\right]=e^{3 x^{2}}(-\sin 4 x)(4)+\cos 4 x e^{3 x^{2}}(6 x)=2 e^{3 x^{2}}(3 \cos 4 x-2 \sin 4 x)$

11a. $f(x)=e^{k(x-1)}+g(2 x) \rightarrow f(1)=e^{k(1-1)}+g(2)=e^{0}+5=6$
$f(x)=e^{k(x-1)}+g(2 x) \rightarrow f^{\prime}(x)=e^{k(x-1)} k+g^{\prime}(2 x) \cdot 2=k e^{k(x-1)}+2 g^{\prime}(2 x)$
$f^{\prime}(1)=k e^{k(1-1)}+2 g^{\prime}(2)=k e^{0}-2(2)=k-4$
$f^{\prime}(x)=k e^{k(x-1)}+2 g^{\prime}(2 x) \rightarrow f^{\prime \prime}(x)=k e^{k(x-1)}(k)+2 g^{\prime \prime}(2 x)(2)=k^{2} e^{k(x-1)}+4 g^{\prime \prime}(2 x)$
$f^{\prime \prime}(x)=k e^{k(x-1)}(k)+2 g^{\prime \prime}(2 x)(2) \rightarrow f^{\prime \prime}(1)=k^{2} e^{k(1-1)}+4 g^{\prime \prime}(2)=k^{2}+12$
11b. Show that the fourth derivative of $f$ is $k^{4} e^{k(x-1)}+16 g^{I V}(2 x)$
$f^{\prime \prime}(x)=k^{2} e^{k(x-1)}+4 g^{\prime \prime}(2 x) \rightarrow f^{\prime \prime \prime}(x)=k^{2} e^{k(x-1)}(k)+4 g^{\prime \prime \prime}(2 x)(2)=k^{3} e^{k(x-1)}+8 g^{\prime \prime \prime}(2 x)$
$f^{\prime \prime \prime}(x)=k^{3} e^{k(x-1)}+8 g^{\prime \prime \prime}(2 x) \rightarrow f^{I V}(x)=k^{3} x^{k(x-1)}(k)+8 g^{I V}(2 x) \cdot(2)=k^{4} x^{k(x-1)}+16 g^{I V}(2 x)$

