3.1 Free Response Solutions

1. $\int_{-1}^{3} x^{5} d x=\left[\frac{x^{6}}{6}\right]_{-1}^{6}=6^{5}-\frac{1}{6}=\frac{364}{3}$
2. $\int_{-5}^{5} \frac{2}{x^{3}} d x=\left[2 \frac{x^{-2}}{-2}\right]_{-5}^{5}=\left(-\frac{1}{25}\right)-\left(-\frac{1}{25}\right)=0$
3. $\int_{1}^{2} \frac{3}{t^{4}} d t=\left[3 \frac{t^{-3}}{-3}\right]_{1}^{2}=\frac{7}{8}$
4. $\int_{0}^{\pi / 4} \sec ^{2} y d y=[\tan y]_{0}^{\pi / 4}=1-0=1$
5. $\quad \int_{0}^{e^{2}-1} \frac{1}{x+1} d x=\ln [x+1]_{0}^{e^{2}-1}=\ln \left(e^{2}-1+1\right)-\ln 1=\ln \left(e^{2}\right)-\ln 1=2-0=2$
6. $\int_{3}^{5}\left(x^{2}+5 x+6\right) d x=\left[\frac{1}{3} x^{3}+\frac{5}{2} x^{2}+6 x\right]_{3}^{5}=\left(\frac{125}{3}+\frac{125}{2}+30\right)-\left(9+\frac{45}{2}+18\right)=84 \frac{2}{3}$
7. $\int_{\pi}^{\frac{3 \pi}{4}} \cos y d y=[\sin y]_{\pi}^{\frac{3 \pi}{4}}=\sin \frac{3 \pi}{4}-\sin \pi=\frac{1}{\sqrt{2}}$.
8. $\int_{1}^{2}\left(\frac{x^{2}-4 x+7}{x}\right) d x=\int_{1}^{2}\left(x-4+\frac{7}{x}\right) d x$
$=\left[x^{2}-4 x+7 \ln x\right]_{1}^{2}=(4-8+7 \ln 2)-(1-4+0)=7 \ln 2-1$
9. $\int_{-2}^{1} f(x) d x=\int_{-2}^{5} f(x) d x-\int_{1}^{5} f(x) d x=-2-3=-5$
10. $\int_{-2}^{1} h(x) d x=\int_{-2}^{5} h(x) d x-\int_{1}^{5} h(x) d x=\int_{5}^{-2} h(x) d x-\int_{1}^{5} h(x) d x=-(-6)-7=-1$
11. $\int_{-2}^{5}[g(x)+h(x)] d x=\int_{-2}^{5}[g(x)] d x+\int_{-2}^{5}[h(x)] d x=\int_{-2}^{1}[g(x)] d x-\int_{5}^{1}[g(x)] d x-\int_{5}^{-2}[h(x)] d x=4-9-(-6)=1$
12. $\int_{-2}^{5}[h(x)+f(x)] d x=\int_{-2}^{5}[h(x)] d x+\int_{-2}^{5}[f(x)] d x=-\int_{5}^{-2}[h(x)] d x+\int_{-2}^{5}[f(x)] d x=-(-6)+(-2)=4$
13. $\quad \int_{-2}^{1}[2 f(x)-3 g(x)] d x=2 \int_{-2}^{1}[f(x)] d x-3 \int_{-2}^{1}[g(x)] d x=2\left(\int_{-2}^{5}[f(x)] d x-\int_{1}^{5}[f(x)] d x\right)-3 \int_{-2}^{1}[g(x)] d x=$ $=2(-2-3)-3(4)=-22$
14. $\int_{1}^{5}\left[\frac{1}{3} h(x)+2 f(x)\right] d x=\frac{1}{3} \int_{1}^{5}[h(x)] d x+2 \int_{1}^{5}[f(x)] d x=\frac{1}{3}(3)+2(7)=15$
15. $g(y)=\int_{2}^{y} t^{2} \sin t d t \Rightarrow g^{\prime}(y)=y^{2} \sin y$
16. $\quad F(x)=\int_{x}^{2} \cos \left(t^{2}\right) d t \Rightarrow F(x)=-\int_{2}^{x} \cos \left(t^{2}\right) d t$
17. $y=\int_{3}^{\sqrt{x}} \frac{\cos t}{t} d t \Rightarrow y^{\prime}=\frac{\cos \sqrt{x}}{\sqrt{x}} \cdot \frac{1}{2} x^{-1 / 2}=\frac{\cos \sqrt{x}}{2 x}$
18. $\frac{d}{d x}\left[\int_{e}^{x^{2}} \ln \left(t^{2}+1\right) d t\right]=\ln \left(\left(x^{2}\right)^{2}+1\right) \frac{d}{d x}\left(x^{2}\right)=\left[\ln \left(x^{4}+1\right)\right](2 x)=2 x \ln \left(x^{4}+1\right)$
19. $\frac{d}{d x} \int_{10}^{x^{2}} t \ln (t) d t=x^{2} \ln x^{2}(2 x)=4 x^{3} \ln x$
20. $\quad h^{\prime}(y)=\frac{d}{d x} \int_{5}^{\ln y} \frac{e^{t}}{t^{4}} d t=\frac{e^{\ln y}}{\ln ^{4} y}=\frac{y}{\ln ^{4} y}$

3.1 Multiple Choice Solutions

1. $\quad \int_{-5}^{5} f(x) d x=\int_{-5}^{2} f(x) d x-\int_{5}^{2} f(x) d x=-17-(-4)=-13$

The correct answer is D.
3. $\quad \int_{7}^{3} P(t) d t=-\left[\int_{3}^{7} P(t) d t\right]=-\left[\int_{2}^{7} P(t) d t-\int_{2}^{3} P(t) d t\right]=-[-2-(7)]=9$

The correct answer is D .
5. $=\frac{1}{2}\left[\int_{0}^{6}[f(x)] d x-\left[-\int_{3}^{6}[f(x)] d x\right]\right]-3\left[\int_{3}^{0}[g(x)] d x\right]=\frac{1}{2}[9+5]-3[7]=28$

The correct answer is E .

$$
\begin{aligned}
& \text { 7. } \quad \int_{5}^{-2}[g(x)-f(x)] d x=-\int_{-2}^{5}[g(x)] d x+\int_{-2}^{5}[f(x)] d x=-\left[\int_{-2}^{1}[g(x)] d x-\int_{5}^{1}[g(x)] d x\right]+\int_{-2}^{5}[f(x)] d x= \\
& =-(4-9)+(-2)=3
\end{aligned}
$$

The correct answer is B.

3.2 Free Response Solutions

1. $\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{5} d x \begin{aligned} & u=1+2 x^{3} \\ & d u=6 x^{2} d x\end{aligned}$
$=\frac{1}{6} \int_{0}^{1} 6 x^{2}\left(1+2 x^{3}\right)^{5} d x=\frac{1}{6} \int_{1}^{3} u^{5} d u=\left.\frac{1}{6} \cdot \frac{1}{6} u^{6}\right|_{1} ^{3}=\frac{1}{36}(728)=\frac{182}{9}$
2. $\int^{1} x \sqrt{4-x^{2}} d x$

$$
\begin{aligned}
& u=4-x^{2} \\
& d u=-2 x d x
\end{aligned}
$$

$=-\frac{1}{2} \int_{-1}^{1}(-2 x)\left(4-x^{2}\right)^{1 / 2} d x=-\frac{1}{2} \int_{3}^{3} u^{1 / 2} d u=0$
5. $\int_{0}^{3} \frac{10 t+15}{\sqrt[4]{t^{2}+3 t+1}} d t \quad \begin{aligned} & u=t^{2}+3 t+1 \\ & d u=(2 t+3) d t\end{aligned}$
$=\int_{0}^{3} \frac{5(2 t+3)}{\sqrt[4]{t^{2}+3 t+1}} d t=5 \int_{1}^{19} u^{-1 / 4} d u=\left.5 \cdot \frac{4}{3} u^{3 / 4}\right|_{1} ^{19}=\frac{20}{3}\left(19^{3 / 4}-1\right)$
7. $\begin{array}{r}\int_{1}^{3} \frac{5 t}{t^{2}+1} d t \\ =\frac{5}{2} \int_{1}^{3} \frac{2 t}{t^{2}+1} d t=\frac{5}{2} \int_{2}^{10} \frac{d u}{u}=\left.\frac{1}{2} \ln u\right|_{2} ^{10}=\frac{5}{2}(\ln 10-\ln 2)=\frac{5}{2} \ln 5 \\ d u=6 x^{2} d x\end{array}$
9. $\quad \int_{\sqrt{3}}^{\sqrt{4}} y e^{y^{2}-3} d y=\frac{1}{2} \int_{\sqrt{3}}^{\sqrt{4}} 2 y e^{y^{2}-3} d y=\frac{1}{2} \int_{0}^{1} e^{u} d u=\frac{1}{2}\left[e^{u}\right]_{0}^{1}=\frac{1}{2}[e-1]$
11. $\int_{3}^{e^{2}+2} \frac{1}{x-2} d x \quad \begin{aligned} & u=x-2 \\ & d u=d x\end{aligned}$
$\int_{1}^{e^{2}} \frac{1}{u} d u=[\ln u]_{1}^{e^{2}}=2-0=2$
13. $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}} \quad \begin{aligned} & u=\ln x \\ & d u=\frac{1}{x} d x\end{aligned}$
$=\int_{1}^{4} \frac{d u}{u^{1 / 2}}=\int_{1}^{4} u^{-1 / 2} d u=\left.2 u^{1 / 2}\right|_{1} ^{4}=2 \cdot 2-2 \cdot 1=2$
15. $\begin{aligned} & \int_{0}^{\pi} \frac{\sin x}{2-\cos x} d x \\ & \int_{0}^{2} f(x) d x=\int_{0}^{1} x^{4} d x+\int_{1}^{2} x^{5} d x=\left.\frac{1}{5} x^{s}\right|_{0} ^{4}+\left.\frac{1}{6} x^{4}\right|_{1} ^{2}=\left(\frac{1}{5}-0\right)+\left(\frac{1}{3}-\frac{1}{6}\right)=\frac{107}{10}\end{aligned}$
17. $\int_{0}^{L n 2} \frac{e^{x}}{1+e^{2 x}} d x \quad \begin{aligned} & u=e^{x} \\ & d u=e^{x} d x\end{aligned}$

$$
=\int_{1}^{2} \frac{d u}{1+u^{2}}=\frac{1}{2} \int_{1}^{2} \frac{d u}{u}=\left.\tan ^{-1} u\right|_{1} ^{2}=\tan ^{-1} 2-\tan ^{-1} 1=\tan ^{-1} 2-\frac{\pi}{4}
$$

19. $\left.\int_{0}^{\frac{\pi}{8}} \sec ^{2}(2 x) d x=\frac{1}{2} \int_{0}^{\pi / 4} \sec ^{2}(2 x)(2 d x)=\frac{1}{2} \int_{0}^{\pi / 4} \sec ^{2} u d u=\frac{1}{2} \tan u\right]_{0}^{\pi / 4}=\frac{1}{2}[1-0]=\frac{1}{2}$
20. $\int_{0}^{\pi} \frac{\cos x}{2+\sin x} d x \begin{aligned} & u=2+\sin x \\ & d u=\cos x d x\end{aligned}$

$$
\int_{2}^{2} f(x) d x=0
$$

23. $\int_{0}^{\sqrt{\frac{\pi}{4}}} m \sec \left(m^{2}\right) \tan \left(m^{2}\right) d m=\frac{1}{2} \int_{0}^{\sqrt{\frac{\pi}{4}}} \sec \left(m^{2}\right) \tan \left(m^{2}\right) 2 m d m=\frac{1}{2} \int_{0}^{\pi / 4} \sec u \tan u d u$

$$
=\frac{1}{2}[\sec u]_{0}^{\pi / 4}=\frac{1}{2}\left[\frac{1}{\sqrt{2}}-1\right]=\frac{1-\sqrt{2}}{2 \sqrt{2}}
$$

25. $\int_{\pi}^{\pi} \cos ^{9}(x) \sin (x) d x \quad \begin{aligned} & u=\cos x \\ & d u=-\sin x d x\end{aligned}$
26. $\int_{\pi}^{2 \pi} \cos \frac{1}{2} \theta d \theta \begin{aligned} & u=\frac{1}{2} \theta \\ & d u=\frac{1}{2} d \theta\end{aligned}$

$$
=2 \int_{\pi}^{2 \pi} \frac{1}{2} \cos \frac{1}{2} \theta d \theta=2 \int_{\pi / 2}^{\pi} \cos u d u=\left.2 \sin u\right|_{\pi / 2} ^{\pi}=2\left(\sin \pi-\sin \frac{\pi}{2}\right)=-2
$$

29. $\int_{0}^{e^{2}-1} \frac{1}{x+1} d x \quad \begin{aligned} & u=x+1 \\ & d u=d x\end{aligned}$

$$
\int_{0}^{e^{2}-1} \frac{1}{x+1} d x=\int_{1}^{e^{2}} \frac{1}{u} d u=[\ln u]_{1}^{e^{2}}=2-0=2
$$

30. $\int_{5}^{e^{3}+4} \frac{1}{x-4} d x \quad \begin{aligned} & u=x-4 \\ & d u=d x\end{aligned}$
$\int_{5}^{e^{3}+4} \frac{1}{x-4} d x=\int_{1}^{e^{3}} \frac{1}{u} d u=[\ln u]_{1}^{e^{3}}=3-0=3$
31. Ave Value $=\frac{1}{7-3} \int_{3}^{7}(x-3)^{2} d x=\frac{1}{4}\left[\frac{(x-3)^{3}}{3}\right]_{3}^{7}=\frac{1}{4}\left[\frac{4^{3}}{3}-0\right]=\frac{16}{3}$
32. Ave Value $=\frac{1}{\pi / 4-0} \int_{0}^{\pi / 4} \sec ^{2} x d x=\frac{4}{\pi}[\tan x]_{0}^{\pi / 4}=\frac{1}{4}[1-0]=\frac{4}{\pi}$
33. Ave Value $=\frac{1}{4-1} \int_{1}^{4}\left(t^{2}-t^{1 / 2}+5\right) d t=\frac{1}{3}\left[\frac{1}{3} t^{3}-\frac{2}{3} t^{3 / 2}+5 t\right]_{1}^{3}=30 \frac{4}{9}$
34. $f(x)=\cos x \sin ^{4} x$ on $x \in[0, \pi] \begin{aligned} & u=\sin x \\ & d u=\cos x d x\end{aligned}$

$$
f_{\text {avg }}=\frac{1}{\pi-0} \int_{0}^{\pi} \cos x \sin ^{4} x d x=\frac{1}{\pi} \int_{0}^{0} u^{4} d u=0
$$

39. $G(x)=\frac{x}{\left(1+x^{2}\right)^{3}}$ on $x \in[0,2] \quad \begin{aligned} & u=1+x^{2} \\ & d u=2 x d x\end{aligned}$
$G_{\text {avg }}=\frac{1}{2-0} \int_{0}^{2} \frac{x}{\left(1+x^{2}\right)^{3}} d x$

$$
=\frac{1}{2} \cdot \frac{1}{2} \int_{0}^{2} \frac{2 x}{\left(1+x^{2}\right)^{3}} d x
$$

$$
=\frac{1}{4} \int_{1}^{5} \frac{d u}{u^{3}}=\frac{1}{4} \int_{1}^{5} u^{-3} d u=\left.\frac{1}{4} \frac{u^{-2}}{-2}\right|_{1} ^{5}=-\frac{1}{8}\left(5^{-2}-1\right)=-\frac{1}{8}\left(\frac{-24}{25}\right)=\frac{3}{25}
$$

41. Ave Temp $=\frac{1}{10} \int_{0}^{10}\left(60+390 e^{-.205 t}\right) d t=225.753^{\circ} \mathrm{F}$
42. Ave Length $=\frac{1}{6} \int_{9}^{15}\left(T(t)=50+15 \sin \frac{\pi}{12} t\right) d t=63.045^{\circ} \mathrm{F}$

3.2 Multiple Choice Solutions

$\int_{1}^{4} \frac{d x}{(1+\sqrt{x})^{2} \sqrt{x}} \sqrt{u=1+\sqrt{x}}$
1.
$2 \int_{2}^{3} \frac{d u}{u^{2}}=\left[\frac{-2}{2 \sqrt{x}}\right]_{2}^{3}=-\frac{2}{3}-(-1)=\frac{1}{3}$
The correct answer is B
3. $\int_{e}^{e^{2}} \frac{1}{x \ln x} d x=\int_{1}^{2} \frac{1}{u} d u=[\ln u]_{1}^{2}=\ln 2$

The correct answer is C
5. $\int\left(2-\sin \frac{t}{5}\right)^{2} \cos \frac{t}{5} d t=-5 \int\left(2-\sin \frac{t}{5}\right)^{2}\left(-\cos \frac{t}{5}\right)\left(\frac{1}{5}\right) d t=-5 \int u^{2} d u$

$$
=-\frac{5}{3} u^{3}+c
$$

The correct answer is A
7. $g_{\text {avg }}=\frac{1}{2-0} \int_{0}^{2} e^{2 x} d x=\frac{1}{2}\left(\frac{1}{7} \int_{0}^{2} e^{7 x} 7 d x\right)=\left[\frac{1}{14} e^{7 x}\right]_{0}^{2}=\frac{1}{14}\left(e^{14}-1\right)$

The correct answer is C
9. $\quad \mathrm{Ave}=\frac{1}{2-(-1)} \int_{-1}^{2}\left(x^{2}+5 x+14\right) d x=\frac{1}{3}\left[\frac{1}{3} x^{3}+\frac{5}{2} x^{2}+14 x\right]_{-1}^{2}=6$

The correct answer is B.
11. Average rate of change $=\frac{f(b)-f(a)}{b-a} \cdot f(3)=81-15=66$ and $f(0)=0$.
$\frac{f(b)-f(a)}{b-a}=\frac{66}{3}=22$
The correct answer is C .
13. The average value will be zero if the areas below the x-axis and the areas above the x-axis match. For only E, this is true.

The correct answer is E

3.3 Free Response Solutions

Find the area under the curve of the given equation on the given interval.

1. $y=x^{3}-2 x^{2}-3 x$ on $x \in[-2,2]$

$$
\begin{aligned}
A & =\int_{-2}^{-1}\left(x^{3}-2 x^{2}-3 x\right) d x-\int_{-1}^{0}\left(x^{3}-2 x^{2}-3 x\right) d x+\int_{0}^{2}\left(x^{3}-2 x^{2}-3 x\right) d x \\
& =\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-\frac{3}{2} x^{2}\right]_{-2}^{-1}-\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-\frac{3}{2} x^{2}\right]_{-1}^{0}+\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-\frac{3}{2} x^{2}\right]_{0}^{2} \\
& =\left[\left(4+\frac{16}{3}+6\right)-\left(\frac{1}{4}+\frac{2}{3}-\frac{3}{2}\right)\right]-\left[0-\left(\frac{1}{4}+\frac{2}{3}-\frac{3}{2}\right)\right]+\left[4-\frac{16}{3}-6\right] \\
& =11.833
\end{aligned}
$$

3. $y=x^{3}-2 x^{2}-x+2$ on $x \in[-3,3]$

$A=-\int_{-3}^{-1}\left(x^{3}-2 x^{2}-x+2\right) d x+\int_{-1}^{1}\left(x^{3}-2 x^{2}-x+2\right) d x-\int_{1}^{2}\left(x^{3}-2 x^{2}-x+2\right) d x$
$+\int_{2}^{3}\left(x^{3}-2 x^{2}-x+2\right) d x$
$=-\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-x^{2}+2 x\right]_{-3}^{-1}+\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-x^{2}+2 x\right]_{-1}^{1}-\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-x^{2}+2 x\right]_{1}^{2}$

$$
+\left[\frac{x^{4}}{4}-\frac{2}{3} x^{3}-x^{2}+2 x\right]_{2}^{3}
$$

$=35.5$
5. $y=\frac{-x}{x^{2}+4}$ on $x \in[-2,2]$

$$
\begin{aligned}
& u=x^{2}+4 \\
& d u=2 x d x
\end{aligned}
$$

$$
A=\int_{-2}^{0} \frac{-x}{x^{2}+4} d x-\int_{0}^{2} \frac{-x}{x^{2}+4} d x
$$

$$
=2 \int_{-2}^{0} \frac{-x}{x^{2}+4} d x
$$

$$
=-\int_{-2}^{0} \frac{2 x}{x^{2}+4} d x
$$

$$
=-\int_{8}^{4} \frac{1}{u} d u=-\left.\ln u\right|_{8} ^{4}=-\ln 4-(-\ln 8)=-\ln \frac{1}{2}=\ln 2
$$

$$
\begin{aligned}
& \text { 7. } y=\frac{\sin \sqrt{x}}{\sqrt{x}} \text { on } x \in\left[.01, \pi^{2}\right] \\
& \begin{array}{l}
u=x^{1 / 2} \\
d u=\frac{1}{2} x^{-1 / 2} d x
\end{array} \\
& A=\int_{.01}^{\pi} \frac{\sin \sqrt{x}}{\sqrt{x}} d x \\
& =\int_{.01}^{\pi} \frac{\sin x^{1 / 2}}{x^{1 / 2}} d x \\
& =2 \int_{.01}^{\pi} \frac{\sin x^{1 / 2}}{2 x^{1 / 2}} d x=2 \int_{.01}^{\sqrt{\pi}} \sin u d u \\
& =-\left.2 \cos u\right|_{.1} ^{\sqrt{\pi}}=-2 \cos \sqrt{\pi}+2 \cos (.1)=1.627 \\
& \text { 9. } y=3 \sin x \sqrt{1-\cos x} \text { on } x \in\left[-\frac{\pi}{2}, \frac{\pi}{3}\right] \\
& \begin{array}{l}
u=1-\cos x \\
d u=\sin x d x
\end{array} \\
& A=-\int_{-\pi / 3}^{0} 3 \sin x \sqrt{1-\cos x} d x+\int_{0}^{\pi / 2} 3 \sin x \sqrt{1-\cos x} d x \\
& =-3 \int_{1 / 2}^{0} u^{1 / 2} d u+3 \int_{0}^{1} u^{1 / 2} d u=-\left.3 \cdot \frac{2}{3} u^{3 / 2}\right|_{1 / 2} ^{0}+\left.3 \cdot \frac{2}{3} u^{3 / 2}\right|_{0} ^{1}=2.707
\end{aligned}
$$

11. The velocity function (in meters per second) for a particle moving along a line is $v(t)=3 t-5$ for $0 \leq t \leq 3$. Find (a) the displacement and (b) the distance traveled by the particle during the given time interval.
(a) $\quad \int_{0}^{3}(3 t-5) d t=\frac{3}{2} t^{2}-\left.5 t\right|_{0} ^{3}=\left(\frac{27}{2}-15\right)=-\frac{3}{2} m$
(b) $\quad \int_{0}^{3}|(3 t-5)| d t=\int_{0}^{5 / 3}-(3 t-5) d t+\int_{5 / 3}^{3}(3 t-5) d t$

$$
=-\frac{3}{2} t^{2}+\left.5 t\right|_{0} ^{5 / 3}+\frac{3}{2} t^{2}-\left.5 t\right|_{5 / 3} ^{3}=\frac{41}{6} m
$$

13. Find the area under the curve $f(x)=e^{-x^{2}}-x$ on $x \in[-1,2]$ (do not use absolute values in your setup, break it into multiple integrals).
$\int_{0}^{a}\left(e^{-x^{2}}-x\right) d x-\int_{a}^{2}\left(e^{-x^{2}}-x\right) d x=3.080$, where $a=0.65291864$
14. Find the area under the curve $f(x)=\frac{x}{x^{2}+1}+\cos (x)$ on $x \in[0, \pi]$
$\int_{0}^{b}\left(\frac{x}{x^{2}+1}+\cos (x)\right) d x-\int_{b}^{\pi}\left(\frac{x}{x^{2}+1}+\cos (x)\right) d x=2.235$, where $b=0.1 .9843654$

3.3 Multiple Choice Homework

1. $\int_{-5}^{3} f(x) d x+\int_{-2}^{3} f(x) d x=A+(-B)$

The correct answer is B
3. $\quad \int_{0}^{4} f(x) d x=\int_{0}^{2} f(x) d x+\int_{2}^{4} f(x)=6+(-6)=0$?

The correct answer is C
5. $\int_{0}^{2}\left|3 e^{-t^{2}} \sin (2 t)\right| d t=1.661$ by calculator

The correct answer is C
7. $\int_{0}^{2}\left(3 e^{-t^{2}} \sin (2 t)\right) d t=1.625$ by calculator

The correct answer is B

3.4 Free Response Solutions

1. $\quad \int_{5}^{10} w^{\prime}(t) d t$ represents the change of the child's weight in pounds from ages 5 to 10 years
2. Newtons-meters, or joules

5a) $\quad \int_{0}^{6.2}\left[8843\left(\frac{\mathrm{t}}{5}\right)^{4}\left(1-\frac{\mathrm{t}}{10}\right)^{5}\right] \mathrm{dt}=971.595$
971 or 972 passengers have gotten into line.
5b) $\quad E^{\prime}(6.2)=8843\left(\frac{6.2}{5}\right)^{4}\left(1-\frac{6.2}{10}\right)^{5}=-111.092$, so the rate of change of people entering the processing line is decreasing because $E^{\prime}(6.2)<0$.
5c) Total people in line $=2500+\int_{0}^{6.2}\left[8843\left(\frac{\mathrm{t}}{5}\right)^{4}\left(1-\frac{\mathrm{t}}{10}\right)^{5}-250\right] \mathrm{dt}=1921.595$
There are 1921 or 1922 people in line

7a) $\quad M(t)=\int_{0}^{12}\left(8-\frac{e^{0.47 t}}{t+6}\right) d t=76.844 \mathrm{cg}$
7b) Total $=\int_{0}^{9}\left(8-\frac{e^{0.47 t}}{t+6}\right)-(7-.46 t \cos (t)) d t=4.143 \mathrm{cg}$
7c) $L^{\prime}(6)=-1.213$. The rate at which the liver is cleansing the blood is decreasing at a rate of $-1.213 \mathrm{cg} / \mathrm{hr} r^{2}$ when $t=6$.
d) $\quad \int_{0}^{t}\left(8-\frac{e^{0.47 x}}{x+6}\right)-(7-.46 x \cos (x)) d x=0$

9a) $\quad P^{\prime}(2)=0.398$ hundreds of letters per hour per hour. The rate at which the 100 s of letters per hour are coming intot he post office is increasing by approximately 40 letters per hr per hr.

9b) $\quad \int_{0}^{3} P(t) d t=24.604$ hundreds of letters or 2460 letters.

9c) Write an expression for $L(t)=3+\int_{0}^{t}[P(x)-5] d x$, the total number of letters in the post office at time t.

11a) $A=\int_{0}^{12}\left[2+\frac{10}{1+\ln (t+1)}\right] d t=70.571$
11b) $E(6)-L(6)=-2.924>0 \therefore$ falling
11c) $A=125+\int_{0}^{12}\left[\left(2+\frac{10}{1+\ln (t+1)}\right)-\left(12 \sin \left(\frac{t^{2}}{47}\right)\right)\right] d t=122.026$ gallons
11d) $\left(2+\frac{10}{1+\ln (t+1)}\right)-\left(12 \sin \left(\frac{t^{2}}{47}\right)\right)=0 \rightarrow t=4.790$ and 11.318 .
Time for the maximum occur at $t=4.790$ and 12
$A(4.790)=149.408$
$A(12)=122.026$
Abs Max $=149.408 \therefore$ no, the tank never overflows.

3.4 Multiple Choice Homework

1. $H^{\prime}(24)$ would be an instantaneous rate of change.

The correct answer is E
3. Since $E(t)$ and $L(t)$ are rates, so is $F(t) . F(16)$ would be the rate of change of the number of people in the park at 4 pm .

The correct answer is D
5. Acre-feet of this field $=\int_{0}^{3}\left(4-\sin ^{3} t\right) d t=10.667$

The correct answer is B
7. Average rate of change $=\frac{P(365)-P(0)}{365-0}=154,120$

The correct answer is C
9. $C(9)=10+\int_{0}^{9}\left(1-3 e^{-0.2 \sqrt{t}}\right) d t=0.715$

The correct answer is E
11. $T(5)=\int_{0}^{5} 20 e^{0.02 t} d t=105$

The correct answer is D

3.5 Free Response Solutions

1a. $\quad F_{\text {avg }}(x)=\frac{1}{8-0} \int_{0}^{8} F(x) d x$. Right Hand Rectangles, $n=8$
$\approx \frac{1}{8}[1 \cdot F(1)+1 \cdot F(2)+1 \cdot F(3)+1 \cdot F(4)+1 \cdot F(5)+1 \cdot F(6)+1 \cdot F(7)+1 \cdot F(8)]$
$=\frac{1}{8}[15+17+12+3-5+8-2+10]$
$=7.25$
1b. Left Hand Rectangles, $n=8$

$$
\begin{aligned}
& \approx \frac{1}{8}[1 \cdot F(0)+1 \cdot F(1)+1 \cdot F(2)+1 \cdot F(3)+1 \cdot F(4)+1 \cdot F(5)+1 \cdot F(6)+1 \cdot F(7)] \\
& =\frac{1}{8}[10+15+17+12+3-5+8-2] \\
& =7.25
\end{aligned}
$$

1c. Midpoint Rectangles, $n=4$

$$
\begin{aligned}
\frac{1}{8-0} \int_{0}^{8} F(x) d x & \approx \frac{1}{8}[2 \cdot F(1)+2 \cdot F(3)+2 \cdot F(5)+2 \cdot F(7)] \\
& =30
\end{aligned}
$$

60
3a. $\quad \int_{0} v(t) d t \approx 20 \cdot v(10)+20 \cdot v(30)+20 \cdot v(50)$

$$
=20 \cdot(28)+20 \cdot(18)+20 \cdot(48)
$$

$$
=1,880 \mathrm{~km}
$$

$$
30
$$

b) Find an approximation for $\int_{0} v(t) d t$ using trapezoids.

3b. $\quad \int_{0}^{30} v(t) d t \approx \frac{1}{2}[v(0)+v(10)] \cdot(10)+\frac{1}{2}[v(10)+v(20)] \cdot(10)+\frac{1}{2}[v(20)+v(30)] \cdot(10)$
$=\frac{1}{2}[30+28] \cdot(10)+\frac{1}{2}[28+32] \cdot(10)+\frac{1}{2}[32+18] \cdot(10)$
$=840 \mathrm{~km}$
c) Find an approximation for $\int_{30} v(t) d t$ using left rectangles.

3c. $\quad \int_{30}^{60} v(t) d t \approx 20 \cdot v(30)+20 \cdot v(40)+20 \cdot v(50)$
$=10 \cdot(18)+10 \cdot(52)+10 \cdot(48)$
$=1,880 \mathrm{~km}$
40
d) Find an approximation for $\int_{0} v(t) d t$ using right rectangles.

$$
\begin{aligned}
\int_{0}^{40} v(t) d t & \approx 10 \cdot v(10)+10 \cdot v(20)+10 \cdot v(30) \\
& =10 \cdot(28)+10 \cdot(32)+10 \cdot(18) \\
& =1,300 \mathrm{~km}
\end{aligned}
$$

5a) Find an approximation for $\int_{0} v(t) d t$ using left Riemann rectangles. 360 $\int_{0} v(t) d t \approx 30 \cdot v(0)+60 \cdot v(30)+30 \cdot v(90)+100 \cdot v(120)+80 \cdot v(220)+60 \cdot v(300)$

$$
\begin{aligned}
& =30 \cdot(0)+60 \cdot(21)+30 \cdot(43)+100 \cdot(38)+80 \cdot(30)+60 \cdot(24) \\
& =10,190 \mathrm{~m}
\end{aligned}
$$

$$
220
$$

b) Find an approximation for $\int_{0} v(t) d t$ using trapezoids.
$\int_{0}^{220} v(t) d t \approx \frac{1}{2}[v(0)+v(30)] \cdot(30)+\frac{1}{2}[v(30)+v(90)] \cdot(60)+\frac{1}{2}[v(90)+v(120)] \cdot(30)+\frac{1}{2}[v(120)+v(220)] \cdot(100)$
$=\frac{1}{2}[0+21] \cdot(30)+\frac{1}{2}[21+43] \cdot(60)+\frac{1}{2}[43+38] \cdot(30)+\frac{1}{2}[38+30] \cdot(100)$
$=6850 \mathrm{~m}$

7a. Find an approximation for $\int_{0} V(t) d t$ using trapezoids.

$$
\begin{aligned}
\int_{0}^{20} V(t) d t \approx & \frac{1}{2}[v(0)+v(4)] \cdot(4)+\frac{1}{2}[v(4)+v(6)] \cdot(2)+\frac{1}{2}[v(6)+v(10)] \cdot(4) \\
& +\frac{1}{2}[v(10)+v(13)] \cdot(3)+\frac{1}{2}[v(13)+v(15)] \cdot(2)+\frac{1}{2}[v(15)+v(20)] \cdot(5) \\
=\frac{1}{2}[83 & +68] \cdot(4)+\frac{1}{2}[68+82] \cdot(2)+\frac{1}{2}[82+40] \cdot(4)+\frac{1}{2}[40+38] \cdot(3) \\
\quad & +\frac{1}{2}[38+30] \cdot(2)+\frac{1}{2}[30+68] \cdot(5)
\end{aligned}
$$

$$
=1,130 \text { gallons }
$$

20

7b) Find an approximation for $\int_{0} V(t) d t$ using left Riemann rectangles.

$$
\begin{aligned}
\int_{0}^{20} V(t) d t & \approx V(0) \cdot 4+V(4) \cdot 2+V(6) \cdot 4+V(10) \cdot 3+V(13) \cdot 2+V(15) \cdot 5 \\
& =(83) \cdot 4+(68) \cdot 2+(82) \cdot 4+(40) \cdot 3+(38) \cdot 2+(30) \cdot 5 \\
& =1,134 \text { gallons }
\end{aligned}
$$

9a. $\int_{0}^{24} \sqrt{1+x^{2}} d x \approx \frac{2-0}{2 \cdot 8}\left[\begin{array}{l}f(0)+2 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+2 f\left(\frac{3}{4}\right) \\ +2 f(1)+2 f\left(\frac{5}{4}\right)+2 f\left(\frac{3}{2}\right)+2 f\left(\frac{7}{4}\right)+f(2)\end{array}\right]$
$=\frac{1}{8}[1+2(1.015)+2(1.057)+2(1.118)+2(1.189)+2(1.265)+2(1.343)+2(1.420)+1.495]$
$=2.414$
b. $\begin{aligned} \int_{0}^{2} \sqrt[4]{1+x^{2}} d x & \approx \frac{1}{4}\left[\begin{array}{rl}f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)+ \\ f\left(\frac{9}{8}\right)+f\left(\frac{11}{8}\right)+f\left(\frac{13}{8}\right)+f\left(\frac{15}{8}\right)\end{array}\right] \\ & =2.411\end{aligned}$

11. See AP Central

3.5 Multiple Choice Solutions

1. Because the curve is decreasing, the right-hand sum will be the lowest value.

The correct answer is C
3. $10(90)+20(88)+30(100)+10(90)=6560$

The correct answer is E
5. $\int_{0}^{8} f(x) \approx 2(8)+2(4)+2(4)+2(4)=40$

The correct answer is C
7. $\int_{0}^{8} f(x) \approx 1(7)+1(8)+1(7)+1(4)+1(2)+1(4)+1(8)+1(4)=44$

The correct answer is E
9. $\approx 1\left[\frac{1}{2}(7+2(8)+2(7)+2(4)+2(2)+2(4)+2(8)+2(4)+0)\right]=40.5$

The correct answer is C
11. The Trapezoidal Rule $\approx \frac{b-a}{2 n}\left[\frac{1}{2}\left(f(a)+2\left(f\left(x_{1}\right)\right)+2\left(f\left(x_{2}\right)\right)++(f(b))\right)\right]$ The correct answer is C

3.6 Free Response Solutions

1a) $\quad V^{\prime}(7)=\frac{V(8)-V(0)}{8-0}=\frac{32-26}{8-0}=\frac{6}{8}=\frac{3}{4} \mathrm{~m}^{3} / \mathrm{min}^{2}$
1b) $\int_{8}^{40} V^{\prime}(t) d t=V(40)-V(8)=24-32=-8$
1c) $1344 \mathrm{~m}^{3}$ of water flows through the pipeline between $\mathrm{t}=0$ and $\mathrm{t}=48$ minutes.
$\int_{0}^{48} V(t) d t \approx 8\left(\frac{26+32}{2}\right)+8\left(\frac{32+43}{2}\right)+8\left(\frac{43+24}{2}\right)$

$$
+8\left(\frac{24+19}{2}\right)+8\left(\frac{19+24}{2}\right)+8\left(\frac{24+26}{2}\right)
$$

1d) $\quad \frac{1}{48} \int_{0}^{=1344} V(t) d t$ represents the avera
pipeline between $\mathrm{t}=0$ and $\mathrm{t}=48$ minutes.

3a) Estimate $R^{\prime}(30)$. Show the work that leads to your answer. Indicate the units.

$$
R^{\prime}(30) \approx \frac{R(40)-R(20)}{40-20}=\frac{40-30}{40-20}-\frac{10}{20}=\frac{1}{2} \text { gallons } / \mathrm{min}^{2}
$$

3b) Use right hand Riemann rectangles to approximate $\int_{0}^{90} R(t) d t$ and indicate units of measure. Explain the meaning of $\int_{0}^{90} R(t) d t$ in terms of the fuel consumption.

$$
\int_{0}^{90} R(t) d t \approx 20(30)+20(40)+10(55)+10(65)+30(70)=4700 \text { gallons }
$$

$\int_{0}^{90} R(t) d t$ it the total consumption of gallons of fuel between $t=0$ and $t=90$ minutes.

3c) Use left hand rectangles to find $\frac{1}{70} \int_{20}^{90} R(t) d t$. Using the correct units, explain the meaning of $\frac{1}{70} \int_{20}^{90} R(t) d t$ in terms of the fuel consumption

$$
\frac{1}{70} \int_{20}^{90} R(t) d t=\frac{1}{70}[20(30)+10(40)+10(55)+30(65)]=50 \mathrm{gal} / \mathrm{min}
$$

The average rate of consumption of fuel, in gallons per minute, between $t=0$ and $t=90$ minutes is 50 .

5a) $\int_{0}^{21} A^{\prime}(t) d t=A(21)-A(0)=8.6-10.3=-1.7$. The patient's A1c score hase dropped 1.7 over the span from $t=0$ to $t=21$ months.

5b) $\quad \int_{0}^{21} A(t) d t \approx 3(10.0)+3(10.5)+3(9.1)+3(8.0)+3(8.9)+3(8.3)+3(8.6)=189.3$.
$\frac{1}{21} \int_{0}^{21} A(t) d t \approx 9.01$ is the patient's average A1c score per month from $t=0$ to $t=21$ months.
5c) $\frac{1}{21} \int_{0}^{21} B(t) d t=7.372$.

7a) $\quad C_{e}{ }^{\prime}(3.4)=\frac{420.5-538.4}{4-3}=-117.9 \mathrm{~kW} /$ month and
$C_{g}{ }^{\prime}(3.4)=\frac{79.8-116}{4-3}=-36.2$ therms $/$ month . Since both values are negative, consumption of both commodities were decreasing at $t=3.4$ months.
7b) $\quad \int_{0}^{12} C_{e}(t) d t \approx 660+667.1+538.4+420.5+412.1+347.8+287.5$
$+303.1+322.4+342.5+390.3+384.2=5075.3 \mathrm{~kW}$
7c) $\quad \int_{0}^{12} C_{g}(t) d t \approx 2(84.6)+2(116)+2(53.9)+2(24.9)+2(18)+2(48.9)=692.6$ therms.
7d) $\frac{1}{12} \int_{0}^{12} C_{g}(t) d t$ is the average gas consumption in therms per month during these 12 months.

9 a) $W(2) \approx \frac{-1.2-(-3.1)}{3-1}=0.45^{\circ} \mathrm{C} / h r^{2}$
9b) $\int_{0}^{8} W(t) d t \approx 1(-3.1)+2(-1.2)+3(1.9)+2(2.5)=2.1^{\circ} \mathrm{C}$ The temperature in Sauris on this night has risen approximately $2.1^{\circ} \mathrm{C}$ between midnight and 8:00am.

9c) $\quad T(1 p m)=T(13)=-8+\int_{0}^{13} W(t) d t$.

Definite Integral Practice Chapter Test

1. Find $\int_{1}^{4} \frac{6}{\sqrt{x}} d x=\left[6 \frac{x^{1 / 2}}{1 / 2}\right]_{1}^{4}=12[2-1]=12$

The correct answer is A
3. $\int_{1}^{2} \frac{1}{\sqrt{1-\frac{1}{4} t^{2}}} d t=2 \int_{1}^{2} \frac{1}{\sqrt{1-\left(\frac{1}{2} t\right)^{2}}} \frac{1}{2} d t=2 \int_{1 / 2}^{1} \frac{1}{\sqrt{1-u^{2}}} d u$
$=2\left[\sin ^{-1} u\right]_{1 / 2}^{1}=2\left[\frac{\pi}{2}-\frac{\pi}{6}\right]=\frac{2 \pi}{3}$
The correct answer is E
5. $\quad \int_{0}^{\pi} \cos x d x=[\sin x]_{0}^{\pi}=0-0=0$?

The correct answer is A
7. Average rate of change $=\frac{f(b)-f(a)}{b-a}=\frac{28-10}{2-(-1)}=6$ on $x \in[-1,2]$

The correct answer is B

Free Response

1. $\int_{0}^{\pi / 9}\left(\tan 3 x+\frac{x}{4+x^{2}}\right) d x=\frac{1}{3} \int_{0}^{\pi / 9}(\tan 3 x) 3 d x+\frac{1}{2} \int_{0}^{\pi / 9}\left(\frac{2 x d x}{4+x^{2}}\right)$
$=\frac{1}{3} \ln |\sec 3 x|_{0}^{\pi / 9}+\frac{1}{2} \ln \left|4+x^{2}\right|_{0}^{\pi / 9}=0.246$
2. $A=-\int_{-2}^{0} x e^{3 x^{2}} d x+\int_{0}^{1} x e^{3 x^{2}} d x=-\frac{1}{6} \int_{12}^{0} e^{u} d u+\frac{1}{6} \int_{0}^{3} e^{u} d u$

$$
A=-\frac{-2}{6}\left[e^{u}\right]_{12}^{0}+\frac{1}{6}\left[e^{u}\right]_{0}^{3}=27128.812
$$

5a. $T=\int_{0}^{2} f(x) d x=20.051 \mathrm{lbs}$
5b. $f^{\prime}(7)=-8.120 \mathrm{lbs} / \mathrm{hr} / \mathrm{hr} . f^{\prime}(7)$ means that, after the store has been open 7 hours, the rate at which the bananas are being removed is decreasing by 8.12 lbs per hour per hour.

5c. $g(5)-f(5)=-2.264 \frac{l b s}{h r}$
5d. Total $=50+\int_{3}^{8} g(t) d t-\int_{0}^{8} f(t) d t=23.347 \mathrm{lbs}$

