6.1 Free Response Solutions

$$
\begin{aligned}
& \text { 1. } y=x+1, \quad y=9-x^{2}, \quad x=-1, \quad x=2 \\
& A=\int_{-1}^{2}\left[\left(9-x^{2}\right)-(x+1)\right] d x=\int_{-1}^{2}\left(9-x^{2}-x-1\right) d x=\int_{-1}^{2}\left(8-x-x^{2}\right) d x \\
& =\left[8 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{2}=\left[16-\frac{4}{2}-\frac{8}{3}\right]-\left[-8-\frac{1}{2}+\frac{1}{3}\right]=19.5
\end{aligned}
$$

$A=\int_{0}^{4}\left[\left(5 x-x^{2}\right)-x\right] d x=\int_{0}^{4}\left[4 x-x^{2}\right] d x=\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4}=32-\frac{8}{3}=32 / 3$
7. $x=e^{y}, x=y^{2}-2, y=-1, y=1$

$A=\int_{-1}^{1}\left[e^{y}-\left(y^{2}-2\right)\right] d y=\left[e^{y}-\frac{1}{3} y^{3}+2 y\right]_{-1}^{1}=\left[e^{1}-\frac{1}{3}+2\right]-\left[\frac{1}{e}+\frac{1}{3}-2\right]=5.684$
9. $y=\sqrt{x+2}, y=\frac{1}{x^{2}}, x=1, x=2$

$$
\begin{aligned}
A= & \int_{1}^{2}\left(\sqrt{x+2}-\frac{1}{x^{2}}\right) d x \\
= & 1.369 \\
& \lim _{a \rightarrow 0^{+}}-\frac{1}{a} \text { dne } \therefore \text { the integral diverges }
\end{aligned}
$$

11. $y=\sqrt{x}, y=e^{-2 x}, x=1$

$A=\int_{-.767}^{2}\left[2^{x}-x^{2}\right] d x=\left[\frac{2^{x}}{\ln 2}-\frac{1}{3} x^{3}\right]_{-.767}^{2}=2.106$

6.1 Multiple Choice Solutions

1. $A=\int_{-9 / 8}^{9 / 8} e^{\left(\frac{-1}{1+x^{2}}\right)} d x=1.080$

The correct answer is B
3. Area $=\int_{0}^{1.456}(2 \sin x-x \ln (2 x+1)) d x=0.661$

The correct answer is B
5. Area $=\int_{0}^{1}\left(e^{2 x}-1\right) d x=\left[\frac{1}{2} e^{2 x}-x\right]_{0}^{1}=\left(\frac{1}{2} e^{2}-2\right)-\left(\frac{1}{2} e^{0}-0\right)=\frac{1}{2}\left(e^{2}-3\right)$

The correct answer is B

6.2 Free Response Solutions

1. $y=1+6 x^{3 / 2}$ on $x \in[0,1]$
$y^{\prime}=9 x^{1 / 2} \rightarrow L=\int_{0}^{1} \sqrt{1+81 x} d x=6.103$
2. $x=\frac{1}{3} \sqrt{y}(y-3)$ on $y \in[1,9]$
$x=\frac{1}{3} y^{3 / 2}-y^{1 / 2} \rightarrow x^{\prime}=\frac{1}{2} y^{1 / 2}-\frac{1}{2} y^{-1 / 2}$
$L=\int_{1}^{9} \sqrt{1+\left(\frac{1}{2} y^{1 / 2}-\frac{1}{2} y^{-1 / 2}\right)^{2}} d y=\int_{1}^{9} \sqrt{1+\frac{1}{4} y-\frac{1}{2}+\frac{1}{4} y^{-1}} d y=\int_{1}^{9} \sqrt{\frac{1}{2}+\frac{1}{4} y+\frac{1}{4} y^{-1}} d y=10.667$
3. $y=\ln x^{3 / 2}$ on $x \in[1, \sqrt{3}]$

$$
y^{\prime}=\frac{1}{x^{3 / 2}} \cdot \frac{3}{2} x^{1 / 2}=\frac{3}{2 x} \rightarrow L=\int_{1}^{\sqrt{3}} \sqrt{1+\frac{9}{4 x^{2}}} d x=1.106
$$

7. Find the length of the arc along $f(x)=\int_{0}^{x} \sqrt{\cos t} d t$ on $x \in\left[0, \frac{\pi}{2}\right]$.

$$
f^{\prime}(x)=\sqrt{\cos x} \rightarrow L=\int_{0}^{\pi / 2} \sqrt{1+\cos x} d x=2
$$

9. Find the perimeter of the region R bounded by $y=(x-3)^{2}-1$, the x-axis, and the y axis.

$$
L=\int_{0}^{2} \sqrt{1+(2 x-6)^{2}} d x+8+2=8.268+10=18.268
$$

11. Find the perimeter of the region R bounded by $y=\sqrt{2 x}$ and $y=\frac{1}{8} x^{4}$.

$$
L=\int_{0}^{2} \sqrt{1+\left(0.5 x^{3}\right)^{2}} d x+\int_{0}^{2} \sqrt{1+\left(\frac{1}{\sqrt{2 x}}\right)^{2}} d x=3.200+2.958=6.158
$$

6.2 Multiple Choice Solutions

1. $\frac{d y}{d x}=\sqrt{x} \rightarrow L=\int_{0}^{4} \sqrt{1+(\sqrt{x})^{2}} d x=\int_{0}^{4} \sqrt{1+x} d x=\left[\frac{2}{3}(1+x)^{3 / 2}\right]_{0}^{4}=\frac{2}{3}(5 \sqrt{5}-1)$

The correct answer is A
3. $\frac{d y}{d x}=\frac{1}{\cos x}(-\sin x)=-\tan x \rightarrow L=\int_{0}^{\pi / 3} \sqrt{1+(-\tan x)^{2}} d x=\int_{0}^{\pi / 3} \sqrt{\sec ^{2} x} d x=$ $\ln |\sec x+\tan x|_{0}^{\pi / 3}=\ln \left|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\right|-\ln |\sec 0+\tan 0|=\ln |2+\sqrt{3}|-\ln 1=\ln |2+\sqrt{3}|$

The correct answer is D
5. $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \rightarrow L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{1}{2 \sqrt{x}}\right)^{2}} d x$

The correct answer is E
7. $\int_{2}^{8} \sqrt{1+\frac{1}{4-x^{2}}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \rightarrow \frac{d y}{d x}=\sqrt{\frac{1}{4-x^{2}}}=\frac{1}{\sqrt{4-x^{2}}}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\sqrt{4-x^{2}}} \rightarrow y=\sin ^{-1} \frac{x}{2}+c \\
& (1,0) \rightarrow 0=\sin ^{-1} \frac{1}{2}+c \rightarrow 0=\frac{\pi}{6}+c \rightarrow c=-\frac{\pi}{6}
\end{aligned}
$$

The correct answer is E

6.3 Free Response Solutions

$$
V=\pi \int_{0}^{1} r^{2} d x=\pi \int_{0}^{1}\left(x^{2}\right)^{2} d x=\pi \int_{0}^{1} x^{4} d x=\pi\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{\pi}{5}
$$

3. $y=\frac{1}{x}, x=1, x=2, y=0$; about the x-axis.

$$
V=\pi \int_{1}^{2} r^{2} d x=\pi \int_{1}^{2}\left(\frac{1}{x}\right)^{2} d x=\pi \int_{1}^{2} x^{-2} d x=\pi\left[\frac{x^{-1}}{-1}\right]_{1}^{2}=\pi / 2
$$

5. The region bounded by $y=\sqrt{\sin x}$ and $y=0$.

$V=\pi \int_{0}^{\pi} r^{2} d x=\pi \int_{0}^{\pi}(\sqrt{\sin x})^{2} d x=\pi \int_{0}^{\pi}(\sin x) d x=\pi[-\cos x]_{0}^{\pi}=2 \pi$
6. The region bounded by $y=\cos x, x=0$, and $y=0$.

$V=\pi \int_{0}^{\pi / 2} r^{2} d x=\pi \int_{0}^{\pi / 2}\left(\cos ^{2} x\right) d x=\pi\left[\frac{1}{2} x+\frac{1}{4} \sin 2 x\right]_{0}^{\pi}=\frac{\pi^{2}}{2}$
7. $y=x^{2}, x=y^{2}$; about the x-axis.

$V=\pi \int_{0}^{1}\left(R^{2}-r^{2}\right) d x=\pi \int_{0}^{1}\left[(\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(x-x^{4}\right) d x=\left.\pi\left|\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right|_{0}^{1}\right|^{2}=\frac{3 \pi}{10}$
8. The region bounded by $y=-\sqrt{x}, y=-2$ and the y-axis.

$$
\begin{aligned}
V & =\pi \int_{0}^{4}\left(R^{2}-r^{2}\right) d x \\
& =\pi \int_{0}^{4}\left[(1)^{2}-(-\sqrt{x})^{2}\right] d x \\
& =\pi \int_{.301}^{1}(1-x) d x \\
& =\pi\left[x-\left.\frac{1}{2} x^{2}\right|_{0} ^{4}\right]=8 \pi
\end{aligned}
$$

13. The region bounded by $y=x^{3}, y=8$, and the y-axis.

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left(R^{2}-r^{2}\right) d x=2 \pi \int_{0}^{2}\left[(8)^{2}-\left(x^{3}\right)^{2}\right] d x \\
& =\pi \int_{0}^{2}\left[64-x^{6}\right] d x \\
& =\pi\left[64 x-\left.\frac{1}{7} x^{7}\right|_{0} ^{2}\right] \\
& \pi\left[128-\frac{128}{7}\right] \\
& =\frac{768 \pi}{7}
\end{aligned}
$$

15. $y=x^{2}, y=2^{x}$; about the x-axis.

$V=\pi \int_{-.767}^{2}\left(R^{2}-r^{2}\right) d x+\pi \int_{2}^{4}\left(R^{2}-r^{2}\right) d x$
$V=\pi \int_{-767}^{2}\left[\left(2^{x}\right)^{2}-\left(x^{2}\right)^{2}\right] d x+\pi \int_{,}^{4}\left[\left(x^{2}\right)^{2}-\left(2^{x}\right)^{2}\right] d x=94.612$
$V=\pi \int_{-.767}^{-767}\left(R^{2}-r^{2}\right) d x+\pi \int_{2}^{4}\left(R^{2}-r^{2}\right) d x$
$V=\pi \int_{-.767}^{2}\left[\left(2^{x}\right)^{2}-\left(x^{2}\right)^{2}\right] d x+\pi \int_{2}^{4}\left[\left(x^{2}\right)^{2}-\left(2^{x}\right)^{2}\right] d x=94.612$

6.3 Multiple Choice Solutions

1. $V=\pi \int_{0}^{4}\left((\sqrt{x})^{2}-\left(\frac{1}{2} x\right)^{2}\right) d x=\pi \int_{0}^{4}\left(x-\frac{1}{4} x^{2}\right) d x=$

$$
\pi\left[\frac{1}{2} x^{2}-\frac{1}{12} x^{3}\right]_{0}^{4}=\pi\left(8-\frac{16}{3}\right)=\frac{8}{3} \pi
$$

The correct answer is E
3. $V=\pi \int_{1}^{e}(\sqrt{\ln x})^{2} d x=\pi \int_{1}^{e}(\ln x) d x=\pi$

The correct answer is C
5. $\quad V=\pi \int_{0}^{1}\left(3^{2}-\left(\tan ^{-1} x\right)^{2}\right) d x=27.505$

The correct answer is E
7. $x^{2}+4 y^{2}=1 \rightarrow y=\sqrt{1-\frac{1}{4} x^{2}} \rightarrow V=\pi \int_{-2}^{2}\left(\sqrt{1-\frac{1}{4} x^{2}}\right)^{2} d x$

$$
V=2 \pi \int_{0}^{2}\left(1-\frac{1}{4} x^{2}\right) d x=2 \pi\left[x-\frac{1}{12} x^{3}\right]_{0}^{2}=\frac{8 \pi}{3}
$$

The correct answer is B
9. Volume $=\pi \int_{n}^{2}\left(\pi^{2}-\left(\frac{\pi}{2}-\sin ^{-1}(x-1)\right)^{2}\right) d x+\pi \int_{0}^{6}\left(\pi^{2}-\left(\frac{\pi}{2} \sqrt{x-2}\right)^{2}\right) d x=105.585$

The correct answer is D

6.4 Free Response Solutions

1. $y^{2}=x, x=0, y=1$; about the y-axis.

$$
V=\pi \int_{0}^{1} r^{2} d y=\pi \int_{0}^{1} x^{2} d y=\pi \int_{0}^{1}\left(y^{2}\right)^{2} d y=\pi \int_{0}^{1} y^{4} d y=\pi\left[\frac{y^{5}}{5}\right]_{0}^{1}=\frac{\pi}{5}
$$

3. The region bounded by by $x=-\sqrt{-y}$ on $y \in[-4,0]$.

$V=\pi \int_{-4}^{0} r^{2} d y=\pi \int_{-4}^{0} x^{2} d y=\pi \int_{-4}^{0}(-\sqrt{-y})^{2} d y=\pi \int_{-4}^{0}(-y) d y=\pi\left[\frac{-y^{2}}{2}\right]_{-4}^{0}=8 \pi$
4. The region bounded by $x=e^{y}-1, x=0$, and $y=\ln 3$.

$$
\begin{aligned}
V & =\pi \int_{0}^{\ln 3} r^{2} d y=\pi \int_{0}^{\ln 3}\left(e^{y}-1\right)^{2} d y=\pi \int_{0}^{\ln 3}\left(e^{2 y}-2 e^{y}+1\right) d y=\pi\left[\frac{1}{2} e^{2 y}-2 e^{y}+y\right]_{0}^{\ln 3}= \\
& =\pi[(4.5-6+\ln 3)-(0.5-3+0)]=2.986
\end{aligned}
$$

7. The region bounded by $x^{2}+4 y^{2}=36$ and the y-axis on $y \in[-3,3]$.

$$
x^{2}+4 y^{2}=36 \rightarrow x=\sqrt{36-4 y^{2}}
$$

$$
V=\pi \int_{-3}^{3} r^{2} d y=\pi \int_{-3}^{3}\left(\sqrt{36-4 y^{2}}\right)^{2} d y=2 \pi \int_{0}^{3}\left(36-4 y^{2}\right) d y=2 \pi\left[36 y-\frac{4 y^{3}}{3}\right]_{0}^{3}=144 \pi
$$

9. $y^{2}=x, x=2 y$; about the y-axis.

$$
V=\pi \int_{0}^{2}\left(R^{2}-r^{2}\right) d y=\pi \int_{0}^{2}\left[(2 y)^{2}-(y)^{2}\right] d y \pi \int_{0}^{2}\left(4 y^{2}-y^{4}\right) d y=\pi\left[\frac{4}{3} y^{3}-\left.\frac{1}{5} y^{5}\right|_{0} ^{2}\right]=\frac{64 \pi}{15}
$$

11. The region bounded by $y=x^{2}, x=1$, and $y=0$.

$$
y=x^{2} \rightarrow x=\sqrt{x}
$$

$$
V=\pi \int_{0}^{1}\left(R^{2}-r^{2}\right) d y=\pi \int_{0}^{1}\left[(1)^{2}-\left(y^{1 / 2}\right)^{2}\right] d y \pi \int_{0}^{1}(1-y) d y=\pi\left[y-\left.\frac{1}{2} y^{2}\right|_{0} ^{1}\right]_{0} \frac{\pi}{2}
$$

13. The region bounded by $y=x^{2}$ and $x=y^{2}$.

$$
y=x^{2} \rightarrow x=\sqrt{y}
$$

$V=\pi \int_{0}^{1}\left(R^{2}-r^{2}\right) d y=\pi \int_{0}^{1}\left[(\sqrt{y})^{2}-\left(y^{2}\right)^{2}\right] d y=\pi \int_{0}^{1}\left[y-y^{4}\right] d y=\pi \int_{0}^{1}\left[\frac{1}{2} y^{2}-\frac{1}{5} y^{5}\right] d y=\frac{3 \pi}{10}$
15. Let R be the region bounded by $y=x^{3}, x=2$, and $y=0$.

$$
y=x^{3} \rightarrow x=y^{1 / 3} y=x^{3}, x=2
$$

$$
V=\pi \int_{0}^{8}\left(R^{2}-r^{2}\right) d y=\pi \int_{0}^{8}\left[(2)^{2}-\left(y^{1 / 3}\right)^{2}\right] d y=\pi \int_{0}^{8}\left[4-y^{2 / 3}\right] d y=\pi \int_{0}^{8}\left[4 y-\frac{3}{5} y^{5 / 3}\right] d y=\frac{128 \pi}{5}
$$

6.4 Multiple Choice Solutions

1. $V=\pi \int_{0}^{2}\left(\left(\sqrt{\frac{16 x}{x^{2}+4}}\right)^{2}-(x)^{2}\right) d x=\pi \int_{0}^{2}\left(\frac{16 x}{x^{2}+4}-x^{2}\right) d x=\pi\left[8 \ln \left(x^{2}+4\right)-\frac{1}{3} x^{3}\right]_{0}^{2}=$ $\pi\left[\left(8 \ln 8-\frac{8}{3}\right)-(8 \ln 4-0)\right]=\pi\left(24 \ln 2-\frac{8}{3}-16 \ln 2\right)=\pi\left(8 \ln 2-\frac{8}{3}\right)$

The correct answer is E
3.

$$
y=x^{3}-1 \rightarrow x=(y+1)^{1 / 3} ; y=x-1 \rightarrow x=y+1
$$

$$
\begin{aligned}
& \text { Boundaries: } y+1=(y+1)^{1 / 3} \rightarrow y=-2,-1 \text {, and } 0 \\
& \text { Volume }=\pi \int_{-7}^{0}\left(\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}\right) d y=2 \pi \int_{-1}^{0}\left((y+1)^{2}-(y+1)^{2 / 3}\right) d y=6.462
\end{aligned}
$$

The correct answer is E
5. The solid is generated when R is rotated about the y-axis, so B and C are incorrect. $y=\frac{\pi}{2}$ is a boundary, so E is incorrect. The formula for the Disk Method about the y-axis is $\pi \int_{0}^{\pi / 2} x^{2} d y$, so A is incorrect.

The correct answer is D
7. The solid is formed when the region is revolved about the x-axis, so only A or E can be correct. The graph shows the problem uses the Washer Method, but A uses the Disk Method.

The correct answer is E

6.5 Free Response Solutions

1. Washer Method

$$
\begin{aligned}
& V=\pi \int_{-4}^{4}\left(R^{2}-r^{2}\right) d x=\pi \int_{-4}^{4}\left((8-(-1))^{2}-\left(\frac{1}{2} x^{2}-(-1)\right)^{2}\right) d x= \\
& 2 \pi \int_{0}^{4}\left(81-\left(\frac{1}{4} x^{4}+x^{2}+1\right)\right) d x=2 \pi \int_{0}^{4}\left(-\frac{1}{4} x^{4}-x^{2}+80\right) d x \\
& =2 \pi\left[-\frac{1}{20} x^{5}-\frac{1}{3} x^{3}+80 x\right]_{0}^{4}=\frac{7424 \pi}{15}
\end{aligned}
$$

3. Washer Method

$$
V=\pi \int_{1}^{3}\left(R^{2}-r^{2}\right) d x=\pi \int_{1}^{3}\left(\left(1+\frac{1}{x}\right)^{2}-1^{2}\right) d x=8.997
$$

5. Washer Method $\quad V=\pi \int_{0}^{1}\left(R^{2}-r^{2}\right) d x=\pi \int_{0}^{1}\left(\left(1-x^{3}\right)^{2}-(1-\sqrt{x})^{2}\right) d x$

$$
\begin{aligned}
& \pi \int_{0}^{1}\left(\left(1-2 x^{3}+x^{6}\right)-(1-2 \sqrt{x}+x)\right) d x=\pi \int_{0}^{1}\left(x^{6}-2 x^{3}-x+2 x^{1 / 2}\right) d x \\
& =\pi\left(\frac{1}{7} x^{7}-\frac{1}{2} x^{4}-\frac{1}{2} x^{2}+\frac{4}{3} x^{3 / 2}\right)_{0}^{1}=\frac{10 \pi}{21}
\end{aligned}
$$

7. $y=\sqrt{x+1} \rightarrow x=y^{2}-1$

Disk Method: $\quad V=\pi \int_{0}^{2}\left(\left[3-\left(y^{2}-1\right)\right]^{2}\right) d y=\pi \int_{0}^{2}\left[9-\left(y^{4}-2 y^{2}+1\right)\right] d y$

$$
=\pi\left[-\frac{1}{5} y^{5}+\frac{2}{3} y^{3}+8\right]_{0}^{2^{n}}=\pi\left[-\frac{32}{5}+\frac{16}{3}+8\right]=\frac{104 \pi}{15}
$$

9. Washer Method: $\quad V=\pi \int^{1}\left(R^{2}-r^{2}\right) d y=\pi \int^{1}\left(\left(3-x_{1}\right)^{2}-\left(3-x_{2}\right)^{2}\right) d y$

$$
\begin{aligned}
& =\pi \int_{-1}^{1}\left(\left(3-y^{2}\right)^{2}-(3-1)^{2}\right) d y=\pi \int_{0}^{1}\left(y^{4}-6 y^{2}+9-4\right) d y=2 \pi \int_{0}^{-1}\left(y^{4}-6 y^{2}+5\right) d y \\
& =2 \pi\left(\frac{1}{5} y^{4}-2 y^{3}+5 y\right)_{0}^{1}=\frac{32 \pi}{15}
\end{aligned}
$$

11. Washer Method $\quad V=\pi \int_{-.916}^{.916}\left(R^{2}-r^{2}\right) d x=\pi \int_{-.916}^{.916}\left(\left(1-y_{1}\right)^{2}-\left(1-y_{2}\right)^{2}\right) d x$

$$
=\pi \int_{-916}^{.916}\left(\left(1-\ln \left(x^{2}+1\right)\right)^{2}-(1-\cos x)^{2}\right) d x=3.447
$$

13. Washer Method $y=\sqrt{6 x-x^{2}} \rightarrow y^{2}=6 x-x^{2} \rightarrow-y^{2}=x^{2}-6 x$

$$
-y^{2}+9=x^{2}-6 x+9=(x-3)^{2} \rightarrow 9-y^{2}=(x-3)^{2} \rightarrow x=3+\sqrt{9-y^{2}}
$$

$$
g(x)=y=-1+e^{-0.5 x} \rightarrow y+1=e^{-0.5 x} \rightarrow \ln (y+1)=-0.5 x \rightarrow-2 \ln (y+1)
$$

$$
V=\pi \int_{0}^{2.9910233}\left[[(-2 \ln (y+1))-(-1)]^{2}-\left[\left(3+\sqrt{9-y^{2}}\right)-(-1)\right]^{2}\right] d y=374.525
$$

6.5 Multiple Choice Solutions

1. This is a Washer Method problem. Both curves are below the line $y=3$, so $V=\pi \int_{a}^{b}\left([k-f(x)]^{2}-[k-g(x)]^{2}\right) d x . y=2 x$ is closer to the line, so
The correct answer is C
2. This is a Disk Method problem. $V=\pi \int_{0}^{1}\left[3-\tan ^{-1} x\right]^{2} d x=20.773 y=\tan ^{-1} x$

The correct answer is E
5. Volume $=\int_{0}^{2}\left(\pi-\left(\frac{\pi}{2}-\sin ^{-1}(x-1)\right)\right)^{2} d x+\int_{0}^{6}\left(\pi-\frac{\pi}{2} \sqrt{x-2}\right)^{2} d x=39.111$

The correct answer is C

6.6 Free Response Solutions

1. Area $=y=(\sqrt{x})^{2}=x$

$$
\text { Volume }=\int_{0}^{4} x^{2} \mathrm{dx}=\left[\frac{1}{3} x^{3}\right]_{0}^{4}=\frac{64}{3}
$$

3. $y=\sqrt{2 x} \rightarrow x=\frac{y^{2}}{7} ; y=\frac{1}{8} x^{4} \rightarrow x=\sqrt[4]{8 y} ;$ Rectangle length $=\sqrt[4]{8 y}-\frac{y^{2}}{7}$

$$
\begin{aligned}
& \text { Area }=3 s^{2}=3\left(\sqrt[4]{8 y}-\frac{y^{2}}{2}\right)^{2} \\
& \text { Volume }=\int_{0}^{2} 3\left(\sqrt[4]{8 y}-\frac{y^{2}}{2}\right)^{2} d y=6.031
\end{aligned}
$$

5. Rectangle length $=y=(x-3)^{2}-1=x^{2}-6 x+8$

$$
\begin{aligned}
& \text { Area }=y^{2}=\left(x^{2}-6 x+8\right)^{2} \\
& \text { Volume }=\int_{0}^{2}\left(x^{2}-6 x+8\right)^{2} d x=33.067
\end{aligned}
$$

7. Rectangle length $=e^{-.5 x}-x^{2}=w ;$ Area $=\frac{1}{2} \mathrm{w}^{2}=\frac{1}{2}\left(\mathrm{e}^{-.5 \mathrm{x}}-\mathrm{x}^{2}\right)^{2}$

Volume $=\int_{-1.429612}^{.81555342} \frac{1}{2}\left(\mathrm{e}^{-.5 \mathrm{x}}-\mathrm{x}^{2}\right)^{2} \mathrm{dx}=0.687$
9. The base is the ellipse $9 x^{2}+4 y^{2}=36$ and the cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
V=\int_{-2}^{2} \frac{1}{2} b h d x=\int_{-2}^{2} \frac{1}{2} \cdot \frac{2}{\sqrt{2}} y \cdot \frac{2}{\sqrt{2}} y d x=\int_{-2}^{2} y^{2} d x=\int_{-2}^{2}\left(9-\frac{9}{4} x^{2}\right) d x=24
$$

11. The base is the region $x^{2} \leq y \leq 1$ and the cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
V & =\int_{-1}^{1}(\text { side })^{2} d x \\
& =\int_{-1}^{1}\left(1-x^{2}\right)^{2} d x=2 \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x=2\left[x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right]_{0}^{1}=\frac{16}{15}
\end{aligned}
$$

13. $y=\sqrt{x}, y=e^{-2 x}, x=1$; the cross-sections are semi-circles.

$$
V=\int_{.301}^{1} \frac{1}{2} \pi r^{2} d x=\frac{\pi}{2} \int_{.301}^{1}\left(\frac{\sqrt{x}-e^{-2 x}}{2}\right)^{2} d x=.085
$$

15. The region bounded by $y=\frac{1}{x}, x=1$ and $x=4$ in Quadrant I where the cross-sections are squares.

$$
V=\int_{1}^{4} \frac{1}{x^{2}} d x=\left[\frac{x^{-1}}{-1}\right]_{1}^{4}=-\frac{1}{4}-(-1)=\frac{3}{4}
$$

17a) $\quad V \approx(36 \pi) \cdot 3+(25 \pi) \cdot 3+(9 \pi) \cdot 3+(4 \pi) \cdot 3+(9 \pi) \cdot 3+(25 \pi) \cdot 3+(36 \pi) \cdot 3$

$$
=582 \pi
$$

17b) $\quad V=\pi \int_{0}^{27}\left(4+2 \cos \left(\frac{\pi}{27} h\right)\right)^{2} d h=13186.456$

6.6 Multiple Choice Solutions

1. $\quad \mathrm{V}=\int_{0}^{3}\left(\mathrm{e}^{-\mathrm{x}^{2} / 2}\right)^{2} d x=\int_{0}^{3}\left(e^{-x^{2}}\right) d x=0.886$

The correct answer is A
3. Perpendicular to the y-axis means the x must be isolated:

$$
x+3 y=5 \rightarrow x=5-3 y . \quad V=\int_{0}^{5 / 3}(5-3 y)^{2} d y=13.889
$$

The correct answer is E
5. Volume $=\int_{0}^{\pi / 4} \frac{\pi}{2}\left(\frac{\cos x-\sin x}{2}\right)^{2} d x=0.112$ and $y=\cos x$

The correct answer is B
7. $x^{2}+4 y^{2}=4 \rightarrow y=\sqrt{1-\frac{1}{4} x^{2}} \rightarrow$ $V=\int_{-2}^{2}\left(\sqrt{1-\frac{1}{4} x^{2}}\right)^{2} d x=2 \int_{0}^{2}\left(1-\frac{1}{4} x^{2}\right) d x=2\left[x-\frac{1}{12} x^{3}\right]_{0}^{2}=2\left[2-\frac{2}{3}\right]=\frac{8}{3}$

The correct answer is A
9. $\quad V=\int_{0}^{2} \frac{1}{2}\left(\pi-\left(\frac{\pi}{2}-\sin ^{-1}(x-1)\right)\right)^{2} d x+\int_{2}^{6} \frac{1}{2}\left(\pi-\left(\frac{\pi}{2} \sqrt{x-2}\right)\right)^{2} d x=6.225$

The correct answer is A.

6.7 Free Response Solutions

1a. Area $=\int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x=\left[\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{2}=\frac{16}{3}-4=\frac{4}{3}$
1b. $\quad V=\frac{\pi}{8} \int_{a}^{b} r^{2} d x=\frac{\pi}{8} \int_{0}^{2}\left(\frac{2 x^{2}-x^{3}}{2}\right)^{2} d x$
1c. The rectangles need to be horizontal, so $y=2 x^{2} \rightarrow x=\sqrt{\frac{y}{2}}$ and $y=x^{3} \rightarrow x=y^{1 / 3}$.
Washer Method: $V=\pi \int_{0}^{8}\left(\left[y^{2 / 3}\right]^{2}-\left[\sqrt{\frac{y}{2}}\right]^{2}\right) d y=\pi \int_{0}^{8}\left(y^{4 / 3}-\frac{1}{2} y\right) d y=$

$$
=\pi\left[\frac{3}{7} y^{7 / 3}-\frac{1}{4} y^{2}\right]_{0}^{8}=\pi\left(\frac{128}{7}-16\right)=\frac{16 \pi}{7} .
$$

3a. Area $=\int_{-1}^{3}(x+1)^{1 / 2} d x=\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{-1}^{3}=\frac{16}{3}-0=\frac{16}{3}$
3b. \quad Volume $=\int_{-1}^{3}(x+1)^{1 / 2}\left(2(x+1)^{1 / 2}\right) d x=\int_{-1}^{3}(2 x+2) d x=$

$$
\left[x^{2}+2 x\right]_{-1}^{-1}=15-(-1)=16
$$

3c. Washer Method with horizontal rectangles:

$$
\begin{aligned}
& y=\sqrt{x+1} \rightarrow x=y^{2}-1 \\
& V=\pi \int_{0}^{2}\left(\left[4-\left(y^{2}-1\right)\right]^{2}-[4-3]^{2}\right) d y
\end{aligned}
$$

5a. $\quad A=\int_{0}^{4}\left[-6\left(x^{2}-4 x\right) e^{-x}-\left(x^{2}-4 x\right)\right] d x=23.326$

5b. $\quad V=\pi \int_{0}^{4}\left[\left[-6\left(x^{2}-4 x\right) e^{-x}+4\right]^{2}-\left(x^{2}-4 x+4\right)^{2}\right] d x=676.640$
5c. $\quad V=\int_{0}^{4}\left[-6\left(x^{2}-4 x\right) e^{-x}-\left(x^{2}-4 x\right)\right]^{2} d x=170.182$

7a. $A=\int_{n}^{3}\left[\frac{9}{2 x+3}\right] d x=\frac{9}{2} \int_{n}^{3}\left[\frac{1}{2 x+3}\right] 2 d x=\frac{9}{2} \int_{3}^{9} \frac{1}{u} d u=\frac{9}{2}[\ln u]_{3}^{9}=\frac{9}{2}[\ln 9-\ln 3]=\frac{9}{2} \ln 3$
7b. $y=\frac{9}{2 x+3} \rightarrow \frac{d y}{d x}=-9(2 x+3)^{-2}(2)=\frac{-18}{(2 x+3)^{2}}$
$P=3+3+1+\int_{0}^{3} \sqrt{1+\left(\frac{-18}{(2 x+3)^{2}}\right)^{2}} d x=10.747$
7c. $\quad V=\pi \int_{0}^{3}\left(\frac{9}{2 x+3}\right)^{2} d x=\frac{81 \pi}{2} \int_{0}^{3}(2 x+3)^{-2} 2 d x=\frac{81 \pi}{2}\left[\frac{(2 x+3)^{-1}}{-1}\right]_{0}^{3}=\frac{81 \pi}{2}\left[-\frac{1}{9}-\left(-\frac{1}{3}\right)\right]$

$$
V=9 \pi=28.274
$$

9a. $\quad A=\int_{0}^{1}[4 x(1-x)-\sqrt[4]{2 x}(x-1)] d x=1.089$
b. $\quad V=\int_{0}^{1}\left[[3-4 x(1-x)]^{2}-[3-\sqrt[4]{2 x}(x-1)]^{2}\right] d x=6.630$.
c. $\quad V=\int_{0}^{0}\left[[4 x(1-x)+2]^{2}-[\sqrt[4]{2 x}(x-1)+2]^{2}\right] d x=17.665$
d. $\quad V=\int_{0}^{1}\left[[k-x(1-x)]^{2}-[k-\sqrt[4]{2 x}(x-1)]^{2}\right] d x$

11a. Find the area of the regions R, S, and T.

$$
\begin{aligned}
& \text { Area }_{R}=\int_{0}^{1.1418956}\left[\left(x^{3}-3 x^{2}+2 x+4\right)-(2 x \sqrt{4-x})\right] d x=2.463 \\
& \text { Area }_{S}=\int_{1.1418956}^{2.5444995}\left[(2 x \sqrt{4-x})-\left(x^{3}-3 x^{2}+2 x+4\right)\right] d x=1.551 \\
& \text { Area }_{T}=\int_{0}^{4}[2 x \sqrt{4-x}] d x-\text { Area }_{S}=15.515
\end{aligned}
$$

11b. Find the volume of the solid generated by rotating the curve $g(x)=2 x \sqrt{4-x}$ around the line $y=8$ on the interval $x \in[1,3]$.

$$
V=\pi \int_{1}^{3}(8-2 x \sqrt{4-x})^{2} d x=48.152
$$

11c. Find the volume of the solid generated by rotating the region S around the line $y=-1$.

$$
V=\int_{11418956}^{2.544495}\left[(2 x \sqrt{4-x}-(-1))^{2}-\left(x^{3}-3 x^{2}+2 x+4-(-1)\right)^{2}\right] d x=55.727
$$

11d. Find the volume of the solid generated if R forms the base of a solid whose cross sections are squares whose bases are perpendicular to the x-axis

$$
V=\int_{0}^{1.1418956}\left[\left(x^{3}-3 x^{2}+2 x+4\right)-(2 x \sqrt{4-x})\right]^{2} d x=6.962
$$

13a) $\mathrm{A}=\int_{0}^{30}{ }_{\mathrm{w}}(\mathrm{x}) \mathrm{dx} \approx\left(\frac{0+14.6}{2}\right)(5)+\left(\frac{14.6+13.5}{2}\right)(5)+\left(\frac{13.5+14.5}{2}\right)(5)+$ $\left(\frac{14.5+17.4}{2}\right)(5)+\left(\frac{17.4+11.6}{2}\right)(5)+\left(\frac{11.6+0}{2}\right)(5)=359 \mathrm{ft}^{2}$

13b) $\quad V=\int_{0}^{30} \mathrm{w}(\mathrm{x}) \cdot \mathrm{h}(\mathrm{x}) \mathrm{dx} \approx(3 \cdot 14.6)(10)+(6 \cdot 14.5)(10)+(8 \cdot 11.6)(10)=2236 \mathrm{ft}^{3}$
13c) $\quad \mathrm{w}^{\prime}(15) \approx \frac{17.4-13.5}{20-10}=.39$. Tangent Line: $\mathrm{w}-15.5=.39(\mathrm{x}-15)$
13d) $\quad X=2 t_{f}(2 t)=-.0001565(2 t+1)^{4}+0.007969(2 t+1)^{3}-0.12954(2 t+1)^{2}+1.06724(2 t+1)-0.931776$
$f^{\prime}(2 t)=-.000626(2 t+1)^{3}(2)+0.023907(2 t+1)^{2}(2)-0.25908(2 t+1)(2)+1.06724(2)$
$\mathrm{f}^{\prime}(2(8))=0.9929 \mathrm{ft} / \mathrm{sec}$

15a) Disk Method with horizontal rectangles: $y=\frac{1}{8} x^{5} \rightarrow x=(8 y)^{1 / 5}$ $\mathrm{V}=\pi \int_{0}^{4}\left[(8 y)^{1 / 5}\right]^{2} \mathrm{dy}=\pi \int_{0}^{4}\left[(8 y)^{2 / 5}\right] \mathrm{dy}=\frac{\pi}{8} \int_{0}^{4}(8 \mathrm{y})^{2 / 5} 8 \mathrm{dy}=\frac{\pi}{8}\left[\frac{5}{7}(8 y)^{7 / 5}\right]_{0}^{4}=\frac{20 \pi}{7} \mathrm{ft}^{3}$

15b)

$$
\mathrm{V}=\pi \int_{0}^{\mathrm{h}}(8 \mathrm{y})^{2 / 5} \mathrm{dy}=\frac{\pi}{8}\left[\frac{5}{7}(8 \mathrm{y})^{7 / 5}\right]_{0}^{\mathrm{h}}=\frac{5 \pi}{56}(8 \mathrm{~h})^{7 / 5}
$$

15c) $\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{V}=\frac{5 \pi}{56}(8 \mathrm{~h})^{7 / 5}\right] \rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{5 \pi}{56}\left[\frac{7}{5}(8 \mathrm{~h})^{2 / 5}(8)\right] \frac{\mathrm{dh}}{\mathrm{dt}}=\pi(8 \mathrm{~h})^{2 / 5} \frac{\mathrm{dh}}{\mathrm{dt}}$

$$
\left.\frac{\mathrm{dV}}{\mathrm{dt}}\right|_{\mathrm{h}=3}=\pi(8(3))^{2 / 5}\left(-\frac{1}{5}\right)=-7.800 \mathrm{ft}^{2} / \mathrm{hr}
$$

15d) $\quad A=\pi \mathrm{r}^{2}$ and $\mathrm{r}=\mathrm{x}=(8 \mathrm{y})^{1 / 5}$, so $\frac{d V}{d t}=\pi(8 h)^{2 / 5} \frac{d h}{d t}=\pi\left[(8 h)^{1 / 5}\right]^{2} \frac{d h}{d t}=\mathrm{A} \frac{d h}{d t}$

17a. $\quad V=\pi \int_{0}^{4}\left(5 x^{1 / 2}\right)^{2} d x=25 \pi \int_{0}^{4} x d x=25 \pi\left[\frac{x^{2}}{2}\right]_{0}^{4}=200 \pi=628.319 i^{3}$
b) $y=5 \sqrt{x} \rightarrow \frac{d y}{d x}=\frac{5}{2} x^{-1 / 2} . L=\int_{-4}^{4} \sqrt{1+\left(\frac{5}{2} x^{-1 / 2}\right)^{2}} d x=21.965 i n$
c) $\tan \theta=\frac{y}{4-x}$
d) $\frac{d}{d t}\left[\tan \theta=\frac{y}{4-x}\right] \rightarrow \sec ^{2} \theta \frac{d \theta}{d t}=\frac{(4-x) \frac{d y}{d t}-y\left(-\frac{d x}{d t}\right)}{(4-x)^{2}}$

$$
\theta=\tan ^{-1} \frac{5}{3}=1.030
$$

$$
\left(\sec ^{2} 1.030\right) \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{3(-.1)-5(-.03)}{3^{2}} \rightarrow \frac{\mathrm{~d} \theta}{\mathrm{dt}}=-0.013^{\mathrm{rad}} / \mathrm{min}
$$

19a) $\quad V=\pi \int_{-18}^{18}\left(\frac{1}{108} x^{2}-14\right)^{2} d x=\pi \int_{-18}^{18}\left(\frac{1}{11664} x^{4}-\frac{7}{27} x^{2}-14\right) d y$
$\mathrm{V}=\pi\left[\frac{1}{11664} \frac{\mathrm{x}^{5}}{5}-\frac{7}{27} \frac{\mathrm{x}^{3}}{3}-14 \mathrm{x}\right]_{-18}^{18}=19,203.928 \mathrm{in}^{3}$
19b) $A=2 \pi(11)^{2}+2 \pi \int_{-18}^{18}\left(\frac{1}{108} x^{2}-14\right) \sqrt{1+\left[\frac{1}{54} \mathrm{x}\right]^{2}} \mathrm{dx}=760.265+2990.835=3751.100 \mathrm{in}^{2}$

19c)

$$
\mathrm{V}_{c y l}=\pi(12.5)^{2} \mathrm{~h} \rightarrow \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{~V}_{c y l}=\pi(12.5)^{2} \mathrm{~h}\right] \rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=(12.5)^{2} \pi \frac{\mathrm{dh}}{\mathrm{dt}}
$$

$$
-4800=(12.5)^{2} \pi \frac{\mathrm{dh}}{\mathrm{dt}} \rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=-9.778 \mathrm{in} / \mathrm{hr}
$$

21. See AP Central

6.8 Free Response Solutions

1. $y=\sec x, y=1, x=0, x=\frac{\pi}{6}$; about the y-axis.

$$
V=\int_{0}^{\pi / 6} 2 \pi r l d x=\int_{0}^{\pi / 6} 2 \pi \cdot x \cdot(\sec x-1) d x=.064
$$

3. $y=\frac{1}{x^{2 / 3}}, x=1, x=8, y=0$; about the y-axis.

$$
V=\int_{1}^{8} 2 \pi r l d x=\int_{1}^{8} 2 \pi \cdot x \cdot\left(x^{-2 / 3}\right) d x=70.689
$$

5. $y=x(x-1)^{2}$ and the x-axis; about the y-axis.

$$
V=\int_{0}^{1} 2 \pi r l d x=\int_{0}^{1} 2 \pi \cdot x \cdot y d x=\int_{0}^{1} 2 \pi x(x-1)^{2} d x=.209
$$

7. $y=\sqrt{x}, y=e^{-2 x}, x=1$;about the line $x=1$.

$$
V=\int_{301}^{1} 2 \pi r l d x=\int_{301}^{1} 2 \pi(1-x)\left(\sqrt{x}-e^{-2 x}\right) d x=.554
$$

9. $y=x^{2}, y=2^{x}$; about the line $x=-1$.

$$
\begin{aligned}
V & =\int_{-.767}^{2} 2 \pi r l d x+\int_{2}^{4} 2 \pi r l d x \\
& =\int_{-.767}^{2} 2 \pi(1+x)\left(2^{x}-x^{2}\right) d x+\int_{2}^{4} 2 \pi(1+x)\left(x^{2}-2^{x}\right) d x \\
& =55.49 .8
\end{aligned}
$$

Volume Practice Test

1. $y=x-4$ is the top curve and $y=x^{2}-4$ is the bottom. The curves intersect at $x=0$ and 1 .

The correct answer is A
3. $V=\pi \int_{0}^{\ln 3}\left[\left(e^{x / 2}\right)^{2}-1^{2}\right] d x=2.83$

The correct answer is B
5. About the y-axis means the x is isolated: $x=\sin y$ and $y \in\left[0, \frac{\pi}{2}\right]$. The correct answer is D

7a. area $=\int_{0}^{6}\left(x \sqrt{12+4 x-x^{2}}-\left(-3 \sin \left(\frac{\pi}{3} x\right)\right)\right)=54.295$
7b) Washer Method: $\quad V=\pi \int_{n}^{6}\left(\left(x \sqrt{12+4 x-x^{2}}-(-4)\right)^{2}-\left(-3 \sin \left(\frac{\pi}{3} x\right)-(-4)\right)^{2}\right)=1012.159$
c) $\quad V=\int_{0}^{6}\left(\left(x \sqrt{12+4 x-x^{2}}-\left(-3 \sin \left(\frac{\pi}{3} x\right)\right)\right)^{2}\right)=713.902$

9a. area $=\int_{0}^{2}\left(\frac{8}{x^{2}+4}\right) d x=8\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2}=4\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=4\left(\frac{\pi}{4}\right)=\pi$

9b. Disk Method:

$$
V=\pi \int_{0}^{2}\left(\frac{8}{x^{2}+4}\right)^{2} d x
$$

9c. Disk Method with horizontal rectangles:
$y=\frac{8}{x^{2}+4} \rightarrow x^{2}+4=\frac{8}{y} \rightarrow x^{2}=\frac{8}{y}-4 \rightarrow x=\sqrt{\frac{8}{y}-4}$
$V=\pi \int_{0}^{2}\left(\sqrt{\frac{8}{y}-4}\right)^{2} d x$

