

- (D) $2 + \ln 2$
- (E) $5 + \ln 2$

The radius of convergence of the series $\frac{x}{4} + \frac{x^2}{4^2} + \frac{x^3}{4^3} + ... + \frac{x^n}{4^n} + ...$

- (A) ∞
- (B) 0
- (C) 1
- (D) 2
- (E) 4

The position vector of a particle moving in the xy-plane at time t is given by $\mathbf{p} = (3t^2 - 4t)\mathbf{i} + (t^2 + 2t)\mathbf{j}$. The speed of the particle at t = 2 is

- (A) 2 units/sec
- (B) $2\sqrt{10}$ units/sec
- (C) 10 units/sec
- (D) 14 units/sec
- (E) 20 units/sec

If
$$f(x) = \ln(x^2 - e^{2x})$$
, then $f'(1) =$

- (A) 0
- (B) 1
- (C) 2
- (D) e
- (E) undefined

5.

The length of the curve $y = \int_{0}^{x} \sqrt{\frac{u}{3}} du$ from x = 0 to x = 9 is

- (A) 16
- (B) 14
- L= Jo /1+ " du
- (C) $10\frac{1}{3}$
- (D) 9√3
- (E) $4\frac{2}{3}$

$$= 3 \frac{4^{3/2}}{3/2} \bigg]_{1}^{4} = 16 - 3 = 1^{-1}$$

6.

If a population of wolves grows according to the logistic equation

$$\frac{dN}{dt} = 0.05N - 0.0005N^2 = .050 \left(1 - \frac{N}{100}\right)$$

where N is the number of wolves and t is measured in years, then $\lim_{t\to\infty} N(t) =$

- (A) 50
- (B) 75
- (C)100
- (D) 150
- (E) 200

7.

The slope of the line tangent to the graph of $y = 2[Arc tan \sqrt{x}]^2$ at the point $\left(1, \frac{\pi^2}{8}\right)$ is

- (A) 0
- (B) $\frac{\pi}{8}$
- (C) #
- (D) $\frac{\pi}{2}$
- (E) π

The graph of the function f on the interval [-4,4] is shown at the right.

$$\int_{-4}^{4} |f(x)| \ dx =$$

- (C) 5
- (D) 8
- (E) 9

Both x and y are functions of a third variable t and $y^2 + x^2 + y = 10$. If $\frac{dx}{dt} = -5$

when x=2 and y=2, then $\frac{dy}{dt}=$

- (A) -1
- **(B)** 1
- (C) 2
- (D) 3
- (E) 4

24 dx + 2x dx + dy = 0

10.

The substitution $u = \ln x$ transforms the definite integral $\int_{1}^{e} \frac{1 - \ln x}{x^2} dx$ into

(A)
$$\int_{0}^{1} (1-u) du$$
 (B) $\int_{0}^{e} (1-u) du$

(B)
$$\int_{0}^{e} (1-u) \ du$$

(C)
$$\int_{0}^{1} \frac{1-u}{e^{u}} du$$

(C)
$$\int_{0}^{1} \frac{1-u}{e^{u}} du$$
 (D)
$$\int_{0}^{1} \frac{1-u}{e^{2u}} du$$
 (E)
$$\int_{0}^{e} \frac{1-u}{e^{u}} du$$

The number of cells of a certain type of bacteria increases continuously at a rate equal to two more than three times the number of bacteria present. If there are 10 present at the start and 42 present t hours later, the value of t is

- (A) 3 ln 4
- (B) in 4
- (C) $\frac{1}{2} \ln 4$
- $(D)\frac{1}{3}\ln 4$
- (E) $\frac{1}{4} \ln 4$

12.

If $\frac{dy}{dx} = x \cdot \sec y$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ and y = 0 when $x = \sqrt{2}$, then when x = 1 the value

of y is

- (A) $-\frac{\pi}{6}$
- (B) 0
- (C) $\frac{\pi}{6}$
- (D) $\frac{\pi}{4}$
- (E) $\frac{\pi}{2}$

13.

Which of the following are asymptotes of y + xy - 2x = 0?

- I. x = -1
- II. x = 1
- III. y = 2

- (A) I only
- (B) II only
- (C) III only
- DI and III only
- (E) II and III only

The curve passing through (1, 0) satisfies the differential equation $\frac{dy}{dx} = 4x + y$. An approximation to y(2) using Euler's Method with two equal steps is

- (A) 0
- (B) 2
- (C) 4
- (D) 6
- (E) 8

15.

The function $f(x) = \begin{cases} 4 - x^2 & \text{for } x \le 1 \\ mx + b & \text{for } x > 1 \end{cases}$

is continuous and differentiable for all real

numbers. The values of m and b are

(A)
$$m = 2, b = 1$$

(B)
$$m = 2, b = 5$$

(C)
$$m = -2$$
, $b = 1$

$$(D)m = -2, b = 5$$

16.

$$\int \frac{8}{(x-1)(x+3)} dx =$$

(A)
$$2 \ln \frac{|x+3|}{|x-1|} + C$$

(B)
$$2 \ln \left| \frac{x-1}{x+3} \right| + C$$

(C)
$$2 \ln |x+3|(x-1)| + C$$

(D)
$$2 \ln \left| \frac{1}{(x+3)(x-1)} \right| + C$$

(E)
$$8 \ln \left| \frac{1}{(x+3)(x-1)} \right| + C$$

If $f(x) = \frac{x-k}{x+k}$ and $k \neq 0$, then f''(0) =

- (A) $-\frac{4}{k^2}$ (B) $-\frac{2}{k}$ (C) 0
- (D) $\frac{2}{k}$

18.

The base of a solid is a right triangle whose perpendicular sides have lengths 6 and 4. Each plane section of the solid perpendicular to the side of length 6 is a semicircle whose diameter lies in the plane of the triangle. The volume of the solid is

- (A) 2π units³
- (B) 4π units³
- (C) 8π units³
- (D) 16π units³
- (E) 24π units³

19.

$$\lim_{h \to 0} \frac{(1+h)^3 - 1}{h} =$$

- (A) undefined
- (B) 3
- (C) 2
- (D) 1
- (E) 0

20.

Suppose a function f is defined so that it has derivatives $f'(x) = x^2(1-x)$ and f''(x) = x(2-3x). Over which interval is the graph of f both increasing and concave up?

- (A) x < 0 (B) $0 < x < \frac{2}{3}$ (C) $\frac{2}{3} < x < 1$ (D) x > 1
- (E) none of these

The average value of the function $f(x) = \sqrt[3]{x^2}$ on the interval [0,8] is

- (A) $\frac{3}{2}$ (B) $\frac{7}{3}$ (C) $\frac{9}{4}$ (D) $\frac{12}{5}$
- (E) $\frac{17}{6}$

Let
$$f(x) = \begin{cases} 2 & \text{if } x < 0 \\ x + 2 & \text{if } x \ge 0 \end{cases}$$
 and let $F(x) = \int_{-2}^{x} f(t) dt$. Which of the following

statements are true?

I.
$$F(1) = 6.5$$

11.
$$F'(1) = 3$$

III.
$$F''(1) = 1$$

23.

Which of the following three improper integrals converge?

$$I. \int_{1}^{\infty} \frac{1}{x^3} dx$$

$$\prod_{i=1}^{n} \int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

III.
$$\int_{0}^{1} \frac{1}{x^3} dx$$

(A) II only (B) I and II only (C) I and III only (D) II and III only

(E) I, II, III

24.

The acceleration of a particle moving along the x-axis at time t > 0 is given by $a(t) = \frac{1}{2}$.

When t=1 second, the particle is at x=2 and moving with velocity -1 unit per second. The position when t = e seconds is

(A)
$$x = -2$$

(B)
$$x = -1$$

(C)
$$x = 0$$

$$(D)x = 1$$

(E)
$$x = 2$$

25.

The slope field for a differential equation $\frac{dy}{dx} = f(x, y)$ is given in the figure. The slope field corresponds to which of the following differential equations?

(A)
$$\frac{dy}{dx} = \tan x \cdot \sec x$$

(B)
$$\frac{dy}{dx} = \sin x$$

(C) $\frac{dy}{dx} = \sec^2 x$

(C)
$$\frac{dy}{dr} = \sec^2 x$$

(D)
$$\frac{dy}{dx} = \ln x$$

(E)
$$\frac{dy}{dx} = e^{2x}$$

The area enclosed by the two curves $y = x^2 - 4$ and y = x - 4 is given by

- (A) $\int_{0}^{1} (x x^{2}) dx$ (B) $\int_{0}^{1} (x^{2} x) dx$ (C) $\int_{0}^{2} (x x^{2}) dx$ (D) $\int_{0}^{2} (x^{2} x) dx$
- (E) $\int (x^2 x) dx$

27.

The coefficient of x^3 in the Taylor series for e^{2x} at x = 0 is

- (A) $\frac{1}{6}$
- (B) $\frac{1}{3}$ (C) $\frac{2}{3}$
- (E) $\frac{8}{3}$

28.

The graph of f is shown at the right.

Approximate $\int f(x) dx$ using the

Trapezoid Rule with 3 equal subdivisions.

- (A) $2\frac{1}{4}$
- (B) $4\frac{1}{2}$

- (D) 18
- (E) 36 s

AP Calculus BC
Practice Final 2008-9
Section I - Part B
Calculator Allowed

name	
SCOTE	

Which of the following is (are) true about a particle that starts at t = 0 and moves along a number line if its position at time t is given by $s(t) = (t-2)^3(t-6)$?

- I. The particle is moving to the right for t > 5.
- II. The particle is at rest at t = 2 and t = 6.
- III. The particle changes direction at t = 2.
 - (A) I only
- (B) II only
- (C) III only
- (D) and III only
- (E) none

77.

The approximate average rate of change of the function $f(x) = \int_{0}^{x} \sin(t^{2}) dt$ over the interval [1, 3] is

- (A) 0.19
- (B) 0.23
- (C) 0.27
- (D) 0.31
- (E) 0.35

 $\int \frac{1}{\sqrt{x}(1-\sqrt{x})} dx =$

$$(A) \frac{1}{2} \ln \left| 1 - \sqrt{x} \right| + C$$

(B)
$$2\ln\left|1-\sqrt{x}\right|+C$$

(C)
$$4\sqrt{1-\sqrt{x}} + C$$

(D)
$$-2 \ln |1 - \sqrt{x}| + C$$

(E) none of these

Let R be the region in the first quadrant that is enclosed by the graph of $f(x) = \ln(x+1)$, the x-axis and the line x = e. What is the volume of the solid generated when R is rotated about the line y = -1?

- (A) 5.037
- (B) 6.545
- (C) 10.073
- (D) 20.146
- (E) 28.686

80.

$$\lim_{h \to 0} \frac{\int_1^{1+h} \sqrt{x^3 + 8} \ dx}{h}$$
 is

- (A) 0
- (B)
- (C) 3
- (D) $2\sqrt{2}$
- (E) nonexistent

81.

A graph of the function g is shown in the figure. If the function h is defined by $h(x) = g(x^2)$, use the graph to estimate h'(2).

- (A) -8
- (C) -2
- (D) 2
- (E) 4

$$\int_{0}^{\infty} xe^{-x^{2}} dx$$
 is

- (A) -1
- (B) 0

- (D) $\frac{1}{4}$ (E) $\frac{1}{2}$

The graph of the derivative of a function f is shown to the right. Which of the following are true about the original function f?

II.
$$f$$
 is continuous at $x = 0$.

III.
$$f$$
 has an inflection point at $x = -2$.

84.

A curve is defined parametrically by $x = e^t$ and $y = 2e^{-t}$. An equation of the tangent line to the curve at $t = \ln 2$ is

(A)
$$x - 2y + 3 = 0$$

(B)
$$x + 2y - 4 = 0$$

(C)
$$x+2y-5=0$$

(D)
$$x-2y-4=0$$

(E)
$$2x + y - 5 = 0$$

85.

If
$$x^2 - y^2 = 25$$
 then $\frac{d^2y}{dx^2} =$

$$(A) - \frac{\lambda}{\lambda}$$

(B)
$$\frac{5}{\sqrt{2}}$$

(A)
$$-\frac{x}{y}$$
 (B) $\frac{5}{y^2}$ (C) $-\frac{x^2}{y^3}$ (D) $-\frac{25}{y^3}$

(D)
$$-\frac{25}{v^3}$$

(E)
$$\frac{4}{y^3}$$

86.
Which of the following series are convergent?

1.
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

II.
$$1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^n}{n} + \dots$$

III.
$$2 + 1 + \frac{8}{9} + ... + \frac{2^n}{n^2} + ...$$

If $\lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = \frac{x^2+1}{x^2}$, then g(x) could be equal to

- (A) x^{-3} (B) $-2x^{-3}$ (C) $\frac{x^2-1}{x}$ (D) $x-x^2$ (E) $1+x^{-2}$

Two particles move along the x-axis and their positions at time $0 \le t \le 2\pi$ are given by $x_1 = \cos t$ and $x_2 = e^{(t-3)/2} - 0.75$. For how many values of t do the two particles have the same velocity?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

89.

A rectangle with one side on the x-axis has its upper vertices on the graph of the parabola $y = 4 - x^2$. The maximum area of such a rectangle is

- (A) 1.155
- (B) 1.855
- (C) 3.709
- (D) 6.158
- (E) 12.316

90.

The radius of convergence of the series $x + \frac{2x^2}{2^2} + \frac{6x^3}{2^3} + \cdots + \frac{n!x^n}{2^n} + \cdots$ is

- (A) ∞
- (B) e^2
- (C) e
- (D) $\frac{e}{2}$
- (E) 0

91.

When using the method of partial fractions to decompose $\frac{8x-4}{r^2+2r-3}$, one of the fractions obtained is

- (A) $\frac{1}{x+3}$ (B) $\frac{7}{x-1}$ (C) $\frac{7}{x+3}$ (D) $\frac{1}{x-3}$ (E) $\frac{7}{x+1}$

A particle moves on the xy-plane so that at time t, $0 \le t \le 5$, its acceleration vector is $\langle \sin t, e^{-t} \rangle$. If the particle is at rest when t = 0, what is the maximum speed it obtains?

- (A) 2.10
- (B) 2.22
- (C) 2.34
- (D) 2.46
- (E) 2.58