AP Calculus BC '13-14

Chapter 7 (Volume) Test

Name:

1. The volume of the solid generated by rotating about the x-axis the region enclosed by $y=3 x^{2}$ and $y=6 x$ is given by
(A) $\pi \int_{0}^{3}\left(6 x-3 x^{2}\right)^{2} d x$
(B) $\quad \pi \int_{0}^{2}\left(6 x-3 x^{2}\right)^{2} d x$
(C) $\pi \int_{0}^{2}\left(9 x^{4}-36 x^{2}\right) d x$
(D) $\quad \pi \int_{0}^{2}\left(36 x^{2}-9 x^{4}\right) d x$
(E) $\pi \int_{0}^{2}\left(6 x-3 x^{2}\right) d x$
2. Let R be the region in the first quadrant bounded by $y=2 \tan ^{-1} x$ and $y=x$. What is the volume of the solid generated when R is rotated about the x-axis?
(A) 1.21
(B) 2.28
(C) 2.698
(D) 6.66
(E) 7.15
3. Which of the following integrals gives the length of the graph $y=\operatorname{Arcsin} \frac{x}{2}$ from $x=a$ to $x=b$
(A) $\int_{a}^{b} \sqrt{1-\frac{1}{\sqrt{4-x^{2}}}} d x$
(B)
$\int_{a}^{b} \sqrt{1+\frac{1}{\sqrt{4-x^{2}}}} d x$
(C) $\int_{a}^{b} \sqrt{1-\frac{1}{4-x^{2}}} d x$
(D) $\quad \int_{a}^{b} \sqrt{1+\frac{1}{4-x^{2}}} d x$
(E) $\int_{a}^{b}\left(1+\frac{1}{4-x^{2}}\right) d x$
4. A region is bounded by $y=\frac{1}{x^{2}}$, the x -axis, the line $x=m$, and the line $x=2 m$, where $m>0$. A solid is formed by revolving the region about the x-axis. The volume of the solid
(a) is independent of m.
(b) increases as m increases.
(c) decreases as m increases.
(d) increases until $m=\frac{1}{2}$, then decreases.
(e) is none of the above
5. Let R be the region bounded by $y=3 \sin x$ on $0 \leq x \leq \frac{\pi}{2}$. Which of the following integrals gives the volume of the solid generated when R is rotated the line $y=-2$?
(a) $\pi \int_{0}^{\pi / 2}(3 \sin x+2)^{2} d x$
(b) $\quad 2 \pi \int_{0}^{\pi / 2}\left(9 \sin ^{2} x+2\right) d x$
(c) $\quad \pi \int_{0}^{\pi / 2}\left(9 \sin ^{2} x-4\right) d x$
(d) $2 \pi \int_{0}^{\pi / 2} 9 \sin (x+2)^{2} d x$
(e) $\quad 2 \pi \int_{0}^{\pi / 2}(3 \sin x+2)^{2} d x$
6. The base of a solid is the region in the first quadrant bounded by $y=\sqrt{2 \cos x}$ for $0<x<\frac{\pi}{2}$. If each cross-section of the solid perpendicular to the x-axis is a square, the volume of the solid is
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
7. $\quad R$ is the region bounded by the curve $y=\frac{1}{\sqrt{x}}$ and the line $y=-\frac{1}{6} x+\frac{7}{6}$.

(a) Find the area of R. Show the integration steps.
(b) Find the volume of the solid generated when R is revolved about the line $y=1$. Show the integration steps.
(c) Find the volume of the solid generated when R is revolved about the line $x=4$. Show the integration steps.
8. Let f and g be the functions given by $f(x)=1+\sin 2 x$ and $g(x)=e^{x / 2}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown below.

(a) Find the perimeter of region R. Show the set-up before using Math 9 .
(b) Find the volume of the solid generated when R is revolved about the x-axis. Show the set-up before using Math 9 .
(c) Let the base of the solid be the region R. Find the volume of the solid where the cross-sections perpendicular to the x-axis are semicircles. Show the set-up before using Math 9 .

End of

Chapter 7 (Volume) Test

