AP Calculus BC '13-14

Chapter 7 (Volume) Test

Name:

1. The volume of the solid generated by rotating about the x-axis the region enclosed by $y = 3x^2$ and y = 6x is given by

(A)
$$\pi \int_0^3 (6x - 3x^2)^2 dx$$
 (B) $\pi \int_0^2 (6x - 3x^2)^2 dx$
(C) $\pi \int_0^2 (9x^4 - 36x^2) dx$ (D) $\pi \int_0^2 (36x^2 - 9x^4) dx$
(E) $\pi \int_0^2 (6x - 3x^2) dx$

2. Let R be the region in the first quadrant bounded by $y = 2 \tan^{-1} x$ and y = x. What is the volume of the solid generated when R is rotated about the *x*-axis?

(A) 1.21 (B) 2.28 (C) 2.698 (D) 6.66 (E) 7.15

3. Which of the following integrals gives the length of the graph $y = Arc \sin \frac{x}{2}$ from x = a to x = b

(A)
$$\int_{a}^{b} \sqrt{1 - \frac{1}{\sqrt{4 - x^{2}}}} dx$$
 (B) $\int_{a}^{b} \sqrt{1 + \frac{1}{\sqrt{4 - x^{2}}}} dx$
(C) $\int_{a}^{b} \sqrt{1 - \frac{1}{4 - x^{2}}} dx$ (D) $\int_{a}^{b} \sqrt{1 + \frac{1}{4 - x^{2}}} dx$
(E) $\int_{a}^{b} \left(1 + \frac{1}{4 - x^{2}}\right) dx$

4. A region is bounded by $y = \frac{1}{x^2}$, the x-axis, the line x = m, and the line x = 2m, where m > 0. A solid is formed by revolving the region about the x-axis. The volume of the solid

(a) is independent of *m*.

- (b) increases as *m* increases.
- (c) decreases as *m* increases.
- (d) increases until $m = \frac{1}{2}$, then decreases.
- (e) is none of the above

5. Let R be the region bounded by $y = 3\sin x$ on $0 \le x \le \frac{\pi}{2}$. Which of the following integrals gives the volume of the solid generated when R is rotated the line y = -2?

(a) $\pi \int_{0}^{\frac{\pi}{2}} (3\sin x + 2)^2 dx$ (b) $2\pi \int_{0}^{\frac{\pi}{2}} (9\sin^2 x + 2) dx$

(c)
$$\pi \int_0^{\pi/2} (9\sin^2 x - 4) dx$$
 (d) $2\pi \int_0^{\pi/2} 9\sin(x + 2)^2 dx$

(e)
$$2\pi \int_0^{\frac{\pi}{2}} (3\sin x + 2)^2 dx$$

6. The base of a solid is the region in the first quadrant bounded by $y = \sqrt{2\cos x}$ for $0 < x < \frac{\pi}{2}$. If each cross-section of the solid perpendicular to the *x*-axis is a square, the volume of the solid is

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

(a) Find the area of R. Show the integration steps.

(b) Find the volume of the solid generated when R is revolved about the line y=1. Show the integration steps.

(c) Find the volume of the solid generated when R is revolved about the line x = 4. Show the integration steps.

8. Let f and g be the functions given by $f(x)=1+\sin 2x$ and $g(x)=e^{\frac{x}{2}}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown below.

(a) Find the perimeter of region R. Show the set-up before using Math 9.

(b) Find the volume of the solid generated when R is revolved about the x-axis. Show the set-up before using Math 9.

(c) Let the base of the solid be the region R. Find the volume of the solid where the cross-sections perpendicular to the *x*-axis are semicircles. Show the set-up before using Math 9.

End of Chapter 7 (Volume) Test