- The velocity of a particle's motion is described by $\langle t^2 + t 2, 2t^2 + 3t 2 \rangle$. At t = 1, the particle's position is (3, -5). y(6) =
- 79.167 a)
- y (6) = y (1) + \ (2t2+3t-2) dt 74.167 b) $= -5 + \left(\frac{2}{3} \cdot t^2 + \frac{3}{2} \cdot t^2 - 2t\right)^6$
- 185.833 c)
- 180.833 d)
- 188.833 e)

- A curve is described by the parametric equations $x = t^2 + 2t$ and $y = t^3 + t^2$. 2. An equation of the line tangent to the curve at the point determined by t = 1 is
- 2x-3y=0a)
- 4x 5y = 2
- 4x y = 10

- d) 5x-4y=7 e) 5x-y=13

$$\frac{dy}{dx} = \frac{dy}{dx} \left| \frac{dy}{dt} \right| = \frac{3t^2 + 7t}{2t + 2} \qquad m = \frac{dy}{dx} \left| \frac{dy}{dx} \right| = \frac{5}{4}$$

$$m = \frac{dy}{dx}\Big|_{t=1} = \frac{5}{4}$$

- Find the slope of the line tangent to $r = 2\theta + \cos\theta$ at $\theta = \frac{\pi}{2}$. 3.
- b) 2 c) 3 d) $\frac{1}{\pi}$ (e) a)

$$\frac{dy}{dt} = \frac{\Gamma \cos \theta + \frac{d\Gamma}{d\theta} \sin \theta}{-\Gamma \sin \theta + \frac{d\Gamma}{d\theta} \cos \theta} = \frac{\pi (\delta) + \pi (1)}{-\pi (1) + \pi (\delta)} = \frac{1}{-\pi (1) + \pi (\delta)}$$

The area of one loop of the graph of the polar equation $r = 2\sin(3\theta)$ 4. is given by which of the following expressions?

a)
$$4\int_0^{\frac{\pi}{3}}\sin^2(3\theta) d\theta$$
 b) $2\int_0^{\frac{\pi}{3}}\sin(3\theta) d\theta$ c) $2\int_0^{\frac{\pi}{3}}\sin^2(3\theta) d\theta$

$$c) 2\int_0^{\frac{\pi}{3}} \sin^2(3\theta) d\theta$$

d)
$$2\int_0^{\frac{2\pi}{3}}\sin^2(3\theta) d\theta$$
 e) $2\int_0^{\frac{2\pi}{3}}\sin(3\theta) d\theta$

e)
$$2\int_0^{2\pi} \sin(3\theta) d\theta$$

A particle moves on a plane so that its position vector is

$$p(t) = \left\langle \frac{1}{3}t^3 + \frac{1}{2}t^2 - 2t + 7, \frac{2}{3}t^3 + \frac{3}{2}t^2 - 2t + \pi^6 \right\rangle \text{ is at rest when}$$

- t = 1 only
- b) $t = \frac{1}{2}$ only c) t = -2 only d) $t = 1, \frac{1}{2}$
- - e) $t=1, \frac{1}{2}, -2$

- An object moves in the xy-plane so that its position at any time t is 6. given by the parametric equations $x(t) = t^4 + 1$ and $y(t) = \cos\left(\frac{\pi}{2}t\right)$. What is the 0 t4+1=2 rate of change of y with respect to x at (2,0)?

 $V(t) = \langle t^2 + t - z, 2t^2 + 3t - z \rangle$

 $(\pm +2)(\pm -1)=0$ $(2\pm +1)(\pm +2)=0$ $\pm = 1, (-2)$ $(2\pm +1)(\pm +2)=0$

a)
$$-\frac{\pi}{8}$$
 b) $-\frac{1}{4}$ c) 4 d) $-\frac{8}{\pi}$

$$\frac{dy}{dt} = \frac{dy}{dt} = -\frac{\pi}{2} \sin \frac{\pi}{2} t$$

$$\frac{dy}{dt} = \frac{-\pi}{8} = -\frac{\pi}{8} = -\frac{\pi}{8}$$

7. At time $t \ge 0$, a particle moving in the *xy*-plane has a velocity vector given by $v(t) = \langle e^{2t}, \sin(3t), \rangle$. What is the acceleration vector of the particle?

b)
$$\langle e^{2t}, \cos(3t) \rangle$$

b) $\langle \frac{1}{2}e^{2t}, \cos(3t) \rangle$
c) $\langle 2e^{2t}, 3\cos(3t) \rangle$
d) $\langle 2e^{2t}, -3\cos(3t) \rangle$

$$\frac{d}{dt} \left(e^{2t} \right) = e^{2t} (z)$$

$$\frac{d}{dt} \left(s_{1N} 3t \right) = (cos 3t) (3)$$

- 8. What is the total area between the polar curves $r = 4\cos(5\theta)$ and $r = 7\cos(5\theta)$?
- a) 14.137
- b) 7.069
- c) 25.918
- d) 51.836

BOULDAR

BOUNDAINES 4 COS 50 = 0 COS 50 =0

9. If
$$x(t) = 5\sin t$$
 and $y(t) = 3\cos t$, then $\frac{d^2y}{dx^2} =$

a)
$$-\frac{3}{5}\cot t$$

b)
$$\frac{3}{5} \tan t$$

c)
$$-\frac{3}{5}\sec^2 t$$

d)
$$\sqrt{\frac{3}{5}}\sec^2 t$$

d)
$$\sqrt{\frac{3}{5}}\sec^2 t$$
 e) $-\frac{3}{25}\sec^3 t$

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{-3/5}{5} TRNt \right) - 3/5 52c^2t$$

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{-3/5}{5} TRNt \right) - 3/5 52c^2t$$

- 10. A particle's velocity (x(t), y(t)) at time $0 \le t \le 10$ is described by the parametric equations $x'(t) = \frac{t}{\sqrt{t^2 + 4}}$ and $y'(t) = \frac{5 t}{\sqrt{10t t^2}}$. At t = 0, the particle's position is (2, 0)
- 2 a. At what time is the particle at rest? Justify your answer.

b. Find the acceleration at t=5.

 \bigcirc C. What is the particle's speed at t=5?

(2)

Is the speed at t=5 increasing or decreasing? Justify your answer.

(2)

What is the total distance traveled by the particle on $1 \le t \le 9$?

The graph below is $r = \theta + \cos 2\theta$ on $\theta \in [-\pi, \pi]$. 11.

What are the points in $\theta \in (-\pi, 0)$ (beside the pole) that are furthest and closest to the origin?

$$20 = \begin{cases} T/6 \pm 2\pi \eta \\ s\sigma/6 \pm 2\pi \eta \end{cases}$$

$$T \left(\frac{11}{12}\right) = -2.580$$

$$T \left(\frac{11}{12}\right) = -2.680$$

$$T \left(\frac{11}{12}\right) = -2.699$$

$$T \left(\frac{11}{12}\right) = -2.699$$

$$T \left(\frac{11}{12}\right) = -2.699$$

$$T \left(\frac{11}{12}\right) = -2.699$$

b. If the curve crosses itself at r = -1.547 and 1.574, find the area of the region enclosed by the loop.

$$A = \frac{1}{2} \int_{-2}^{2.021} (\Theta + \cos 2\Theta)^2 d\Theta = .857$$

c. Find the y-coordinate of the point on $r = \theta + \cos 2\theta$ where x = -3. Is r increasing or decreasing at t hose points?