PreCalculus ACC ‘22-23
Dr. Quattrin
Radical Test
CALCULATOR ALLOWED
Round to 3 decimal places.

Name: \qquad

1. If $y=\frac{x}{\sqrt{x^{2}+6}}$, then $\frac{d y}{d x}=$
a) $\frac{6}{\left(x^{2}+6\right)^{3 / 2}}$
b) $\frac{-x}{\left(x^{2}+6\right)^{3 / 2}}$
c) $\frac{-x^{2}}{x^{2}+6}$
d) $\frac{x}{\left(x^{2}+6\right)^{3 / 2}}$
e) $\frac{-x^{2}-6 x}{x^{2}+6}$
2. Let $f(x)$ be the function given by $f(x)=\sqrt{x+3}$. What is the y-intercept of the line tangent to $f(x)$ at $(1,2)$?
a) $\frac{1}{4}$
b) $\frac{1}{2}$
c) $\frac{3}{4}$
d) $\frac{5}{4}$
e) $\frac{7}{4}$
3. Given the functions $f(x)$ and $g(x)$ that are both continuous and differentiable, and that have values given on the table below.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-3	1	-2	5	6
1	5	7	-3	-5
5	-3	-4	1	2

Given that $h(x)=f(g(x)), h^{\prime}(-3)=$
a) $\quad-24$
b) -12
c) -4
d) -5
e) -2
4. Find the equation of the line tangent to $x^{3}-y^{2}+6 y=3$ at $(-2,1)$
a) $3 x^{2}-2 y=-6$
b) $3 x-y=-7$
c) $3 x+y=-5$
d) $x+3 y=1$
e) $x-3 y=-5$
5. Which of the following equations matches the graph below?

a) $y=\sqrt{\frac{x^{2}}{4-x^{2}}}$
b) $y=\sqrt{\frac{4-4 x^{2}}{x^{2}+4}}$
c) $y=\sqrt{\frac{4 x^{2}-4}{x^{2}+4}}$
d) $y=\sqrt{\frac{x^{2}}{x^{2}-4}}$
6. What is the end behavior of $y=-\sqrt{x^{3}-2 x^{2}-5 x+6}$?
a) None on the left and down on the right
b) None on the left and none on the right
c) Up on the left and none on the right
d) Down on both ends
e) Down on the left and none on the right
7. The x-value(s) of the relative maximum(s) of $y=\sqrt{27 x-x^{3}}$ is/are
a) 3
b) $3 \sqrt{6}$ c) -3
d) $0, \pm 3 \sqrt{3}$
e) 0

a) $\quad x \in(-\infty,-4) \cup(1,2)$
b) $\quad x \in(-\infty,-4] \cup[1,2]$
c) $\quad x \in(-4,1) \cup(2, \infty)$
d) $x \in[-4,1] \cup[2, \infty]$
e) $\quad x \in[-4,1] \cup[2, \infty)$

PreCalculus ACC ‘22-23
Dr. Quattrin
Radical Test
CALCULATOR ALLOWED
Round to 3 decimal places.
Show all work.

1. Find the zeros, domain, and End Behavior $y=-\sqrt{x^{4}-7 x^{2}+12}$ on $x \in[-4, \infty)$.
zeros
domain \qquad

Left End Behavior \qquad

Right End Behavior \qquad
2. Extreme points of $y=-\sqrt{x^{4}-7 x^{2}+12}$ on $x \in[-4, \infty)$.
3. Find the zeros, domain, and End Behavior $y=\sqrt{\frac{x^{2}-16}{x^{2}-9}}$. zeros \qquad
domain \qquad

VAs \qquad

Left End Behavior \qquad

Right End Behavior
4. Extreme points of $y=\sqrt{\frac{x^{2}-16}{x^{2}-9}}$.
5. Find the zeros, domain, and End Behavior $y=\sqrt{x^{3}+4 x^{2}-5 x-20}$.
zeros \qquad
domain \qquad

Left End Behavior \qquad

Right End Behavior \qquad
6. Extreme points of $y=\sqrt{x^{3}+4 x^{2}-5 x-20}$.
7. Find the traits and sketch of $y=\sqrt{x^{3}+4 x^{2}-5 x-20}$.
Domain:
Y - Intercept:

Zeros:
Range:
End Behavior (left):
End Behavior (right):
Extreme Points:
8. Find the traits and sketch of $y=\sqrt{\frac{x^{2}-16}{x^{2}-9}}$.

Domain:
Zeros:
VAs:
End Behavior (left):
Extreme Points:
Y - Intercept:
Range:
POEs:
End Behavior (right):

