Precalc ACC '23 (Quattrin) Name: Practice Spring Final – Part I; 30 Minutes Calculator Allowed score

1. Which of the following statements must be **false**?

(A)
$$\frac{d}{dx}\sqrt{e^x+3} = \frac{1}{2\sqrt{e^x+3}}$$

(B)
$$\frac{d}{dx}(\ln \sin x) = \cot x$$

(C)
$$\frac{d}{dx}\left(4x^4 - e + \sqrt[7]{x^2} - \frac{2}{x^3}\right) = 16x^3 + \frac{2}{7\sqrt[7]{x^5}} + \frac{6}{x^4}$$

(D)
$$\frac{d}{dx} \left[\ln \sqrt{4x+1} \right] = \frac{2}{4x+1}$$

2. If
$$y = x^2 e^{2x}$$
, then $\frac{dy}{dx} =$

a)
$$2xe^{2x}$$
 b) $4xe^{2x}$ c) $xe^{2x}(x+1)$
d) $2xe^{2x}(x+1)$ e) $xe^{2x}(x+2)$

3. The functions f(x) and g(x) are continuous and differentiable, and have values given in the table below.

	x	f(x)	f'(x)	g(x)	g'(x)				
	2	2 4 -2 8 1							
	4	10	8	4	3				
	8	6	-12	2	4				
Given that $k(x) = \frac{f(x)}{g(x)}$, find $k'(4)$.									

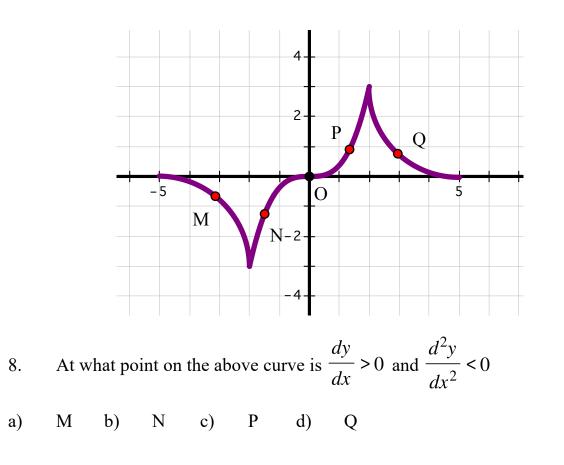
(A)
$$\frac{5}{2}$$
 (B) $\frac{8}{3}$ (C) $\frac{1}{2}$ (D) $\frac{1}{8}$ (E) $\frac{3}{5}$

4. Find the equation of the line tangent to the curve $f(x) = 4x^4 - 5x^2 + x$ at the point where x = -1.

(A) y+2 = -5(x+1)(B) y+2 = -6(x+1)(C) y-5 = -2(x+1)(D) y-5 = -6(x+1) 5. Which of these functions has a point of exclusion at (1,3) and a vertical asymptote at $x = \frac{1}{2}$? (A) $g(x) = \frac{x-1^2}{4x^2-1}$ (B) $h(x) = \frac{x-1}{2x^2-3x+1}$ (C) $f(x) = \frac{2x+1}{4x^2-1}$ (D) $k(x) = \frac{3x-3}{2x^2-3x+1}$

- 6. Find the end behavior, if any, for $g(x) = e^{2x}\sqrt{5-x}$.
- a) Left end none; y = 0 on the right
- b) Left end down; y = 0 on the right
- c) Left end y = 0; right end up
- d) Left end y = 0; right end none
- e) None on the left and right

- 7. Suppose f(x) has the derivative $f'(x) = -(x-3)^2(x+5)(x+1)$. Then
- a) f(x) has a relative minimum at x = -5 and x = 3
- b) f(x) has a relative maximum at x = -5 and a relative minimum at x = -1
- c) f(x) has a relative maximum at x = -1 and a relative minimum at x = -5and x = 3
- d) f(x) has a relative maximum at x = -1 and a relative minimum at x = -5
- e) f(x) has a relative maximum at x = -1 and a relative minimum at x = 3



A particle's velocity is given by $v(t) = \cos^2\left(\frac{\pi}{3}t\right)$. The particle's 9. acceleration at t = 1 is:

(A)
$$\frac{-\pi\sqrt{3}}{6}$$
 (B) $\frac{-\sqrt{3}}{4}$ (C) $\frac{3}{4}$ (D) $\frac{\pi}{4}$ (E) DNE

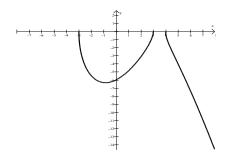
10. The domain of
$$y = \ln(x^3 - 9x)$$
 is

- a) $x \in (-\infty, -3] \cup [0, 3]$ b)
- d) $x \in (-3, 0) \cup (3, \infty)$ c) $x \in [-3, 0] \cup [3, \infty)$

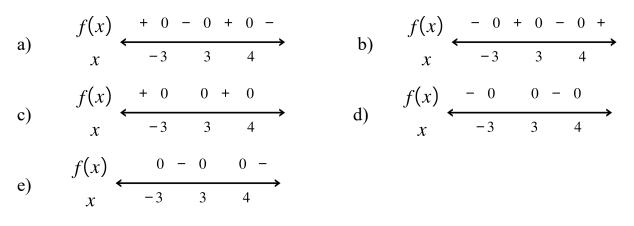
e)
$$x \in (-\infty, \infty)$$

)
$$x \in (-\infty, -3) \cup (0, 3)$$

- Which of the following is true of $g(x) = \frac{1 + e^x}{e^x 1}$? 11.
- g(x) has a y-intercept at x = 0a)
- g(x) attains a relative maximum at x = 1b)
- g(x) is increasing for $x \neq 0$ c)
- g(x) has a zero at x = 0d)
- g(x) has a vertical asymptote at x = 0e)



12. Given the graph above, which of the following might be the sign pattern of f(x)?



 Precalc ACC '23 (Quattrin)
 Name:______

 Practice Spring Final – Part 60 Minutes

 Dr. Quattrin

 Calculator Allowed
 score ______

a.
$$\frac{d}{dx}(\tan 4x^2)$$

b.
$$\frac{d}{dx}(\ln(x^2+7x))$$

c.
$$\frac{d}{dx}\left(e^{-\frac{1}{2}x}\csc x\right)$$

d.
$$\frac{d}{dx}\left(\frac{\sin 5x}{25+x^2}\right)$$

2. Find the end behavior of each of the following functions. Show the limits that lead to your conclusions.

a) $y = (4x^2 - 16x)e^{-0.25x}$ Left end:

Right End:

b)
$$y = \ln(-x^3 - 6x^2 + 5x + 30)$$

Left end:

Right End:

c)
$$y = -\sqrt{\frac{16x}{x^2 + 4}}$$
.

Left end:

Right End:

3. Find the domain and Zeros of $y = -\sqrt{\frac{16x}{x^2+4}}$. Show the supporting derivative work.

Domain: _____

Zeros: _____

4. Find the extreme points of $y = -\sqrt{\frac{16x}{x^2+4}}$. Show the algebraic work to support the critical values.

Extreme Points:

5. Find the domain and Zeros of $y = (4x^2 - 16x)e^{-0.25x}$. Show the supporting derivative work.

Domain: _____

Zeros:

6. Find the extreme points of $y = (4x^2 - 16x)e^{-0.25x}$. Show the algebraic work to support the critical values.

Extreme Points:

7. Find the domain and Zeros of $y = \ln(-x^3 - 6x^2 + 5x + 30)$ on $x \in [-7, 5]$.

Zeros: _____

8. Find the extreme points of $y = \ln(-x^3 - 6x^2 + 5x + 30)$ on $x \in [-7, 5]$. Show the algebraic work to support the critical values.

Extreme Points:

Do **TWO** of the following three problems:

9.	Find the traits and skete	ch of y =	$(4x^2-16x)$	$e^{-0.25x}$.
----	---------------------------	-----------	--------------	----------------

Domain:

Range:

x - intercepts:

y – intercept:

Extreme Points:

End Behavior (Left):

End Behavior (Right):

10. Find the traits and sketch
$$y = \ln(-x^3 - 6x^2 + 5x + 30)$$
 on $x \in [-7, 5]$.

Domain:

Range:

x – intercepts:

y -intercept:

Extreme Points:

End Behavior (Left):

End Behavior (Right):

10. Find the traits and sketch $y = -\sqrt{\frac{16x}{x^2+4}}$.

Domain:

Range:

x - intercepts:

y -intercept:

Extreme Points:

End Behavior (Left):

End Behavior (Right):

