Precalc ACC '23 (Quattrin) Name:

Practice Spring Final - Part I; 30 Minutes

Calculator Allowed
score \qquad

1. Which of the following statements must be false?
(A) $\frac{d}{d x} \sqrt{e^{x}+3}=\frac{1}{2 \sqrt{e^{x}+3}}$
(B) $\frac{d}{d x}(\ln \sin x)=\cot x$
(C) $\frac{d}{d x}\left(4 x^{4}-e+\sqrt[7]{x^{2}}-\frac{2}{x^{3}}\right)=16 x^{3}+\frac{2}{7 \sqrt[7]{x^{5}}}+\frac{6}{x^{4}}$
(D) $\frac{d}{d x}[\ln \sqrt{4 x+1}]=\frac{2}{4 x+1}$
2. If $y=x^{2} e^{2 x}$, then $\frac{d y}{d x}=$
a) $\quad 2 x e^{2 x}$
b) $4 x e^{2 x}$
c) $x e^{2 x}(x+1)$
d) $2 x e^{2 x}(x+1)$
e) $x e^{2 x}(x+2)$
3. The functions $f(x)$ and $g(x)$ are continuous and differentiable, and have values given in the table below.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	4	-2	8	1
4	10	8	4	3
8	6	-12	2	4

Given that $k(x)=\frac{f(x)}{g(x)}$, find $k^{\prime}(4)$.
(A) $\frac{5}{2}$
(B) $\frac{8}{3}$
(C) $\frac{1}{2}$
(D) $\frac{1}{8}$
(E)
4. Find the equation of the line tangent to the curve $f(x)=4 x^{4}-5 x^{2}+x$ at the point where $x=-1$.
(A) $y+2=-5(x+1)$
(B) $y+2=-6(x+1)$
(C) $y-5=-2(x+1)$
(D) $y-5=-6(x+1)$
5. Which of these functions has a point of exclusion at $(1,3)$ and a vertical asymptote at $x=\frac{1}{2}$?
(A) $g(x)=\frac{x-1^{2}}{4 x^{2}-1}$
(B) $h(x)=\frac{x-1}{2 x^{2}-3 x+1}$
(C) $f(x)=\frac{2 x+1}{4 x^{2}-1}$
(D) $k(x)=\frac{3 x-3}{2 x^{2}-3 x+1}$
6. Find the end behavior, if any, for $g(x)=e^{2 x} \sqrt{5-x}$.
a) Left end none; $y=0$ on the right
b) Left end down; $y=0$ on the right
c) Left end $y=0$; right end up
d) Left end $y=0$; right end none
e) None on the left and right
7. Suppose $f(x)$ has the derivative $f^{\prime}(x)=-(x-3)^{2}(x+5)(x+1)$. Then
a) $\quad f(x)$ has a relative minimum at $x=-5$ and $x=3$
b) $\quad f(x)$ has a relative maximum at $x=-5$ and a relative minimum at $x=-1$
c) $\quad f(x)$ has a relative maximum at $x=-1$ and a relative minimum at $x=-5$ and $x=3$
d) $\quad f(x)$ has a relative maximum at $x=-1$ and a relative minimum at $x=-5$
e) $\quad f(x)$ has a relative maximum at $x=-1$ and a relative minimum at $x=3$

8. At what point on the above curve is $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}<0$
a) M
b) N
c) P
d) $\quad Q$
9. A particle's velocity is given by $v(t)=\cos ^{2}\left(\frac{\pi}{3} t\right)$. The particle's acceleration at $t=1$ is:
(A) $\frac{-\pi \sqrt{3}}{6}$
(B) $\frac{-\sqrt{3}}{4}$
(C) $\frac{3}{4}$
(D) $\frac{\pi}{4}$
(E) DNE
10. The domain of $y=\ln \left(x^{3}-9 x\right)$ is
a) $\quad x \in(-\infty,-3] \cup[0,3]$
b) $\quad x \in(-\infty,-3) \cup(0,3)$
c) $x \in[-3,0] \cup[3, \infty)$
d) $\quad x \in(-3,0) \cup(3, \infty)$
e) $x \in(-\infty, \infty)$
11. Which of the following is true of $g(x)=\frac{1+e^{x}}{e^{x}-1}$?
a) $\quad g(x)$ has a y-intercept at $x=0$
b) $\quad g(x)$ attains a relative maximum at $x=1$
c) $\quad g(x)$ is increasing for $x \neq 0$
d) $\quad g(x)$ has a zero at $x=0$
e) $\quad g(x)$ has a vertical asymptote at $x=0$

12. Given the graph above, which of the following might be the sign pattern of $f(x)$?

d) $\quad \begin{gathered}f(x) \\ x\end{gathered} \stackrel{-3}{\rightleftarrows} \underset{-3}{\rightleftarrows}$

Precalc ACC '23 (Quattrin) Name:
Practice Spring Final - Part 60 Minutes
Dr. Quattrin
Calculator Allowed
score \qquad
a. $\frac{d}{d x}\left(\tan 4 x^{2}\right)$
b. $\frac{d}{d x}\left(\ln \left(x^{2}+7 x\right)\right)$
c. $\frac{d}{d x}\left(e^{-\frac{1}{2} x} \csc x\right)$
d. $\frac{d}{d x}\left(\frac{\sin 5 x}{25+x^{2}}\right)$
2. Find the end behavior of each of the following functions. Show the limits that lead to your conclusions.
a) $y=\left(4 x^{2}-16 x\right) e^{-0.25 x}$ Left end:

Right End:
b) $y=\ln \left(-x^{3}-6 x^{2}+5 x+30\right)$ Left end:

Right End:

c) $y=-\sqrt{\frac{16 x}{x^{2}+4}}$.

Left end:

Right End:
3. Find the domain and Zeros of $y=-\sqrt{\frac{16 x}{x^{2}+4}}$. Show the supporting derivative work.

Domain: \qquad

Zeros: \qquad
4. Find the extreme points of $y=-\sqrt{\frac{16 x}{x^{2}+4}}$. Show the algebraic work to support the critical values.

Extreme Points:
5. Find the domain and Zeros of $y=\left(4 x^{2}-16 x\right) e^{-0.25 x}$. Show the supporting derivative work.

Domain: \qquad

Zeros: \qquad
6. Find the extreme points of $y=\left(4 x^{2}-16 x\right) e^{-0.25 x}$. Show the algebraic work to support the critical values.

Extreme Points:
7. Find the domain and Zeros of $y=\ln \left(-x^{3}-6 x^{2}+5 x+30\right)$ on $x \in[-7,5]$.

Domain: \qquad

Zeros: \qquad
8. Find the extreme points of $y=\ln \left(-x^{3}-6 x^{2}+5 x+30\right)$ on $x \in[-7,5]$. Show the algebraic work to support the critical values.

Extreme Points:

Do TWO of the following three problems:
9. Find the traits and sketch of $y=\left(4 x^{2}-16 x\right) e^{-0.25 x}$.

Domain:
x - intercepts:
Extreme Points:
End Behavior (Left):

Range:
y - intercept:

End Behavior (Right):
10. Find the traits and sketch $y=\ln \left(-x^{3}-6 x^{2}+5 x+30\right)$ on $x \in[-7,5]$.

Domain:
x - intercepts:

Extreme Points:

End Behavior (Left):
Enct.

Range:
y - intercept:

End Behavior (Right):

10. Find the traits and sketch $y=-\sqrt{\frac{16 x}{x^{2}+4}}$.

Domain:
x - intercepts:

End Behavior (Left):

Extreme Points:

Range:
y - intercept:

End Behavior (Right):

