Score _____

Forn B

- 1. On the graph of $y = -\cos x$, as x increases on $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$, the function y
- (a) decreases
- (b) is constant
- (c) increases

- (d) decreases, then increases
- (e) increases, then decreases
- 2. This is the graph of $y = \sin(2x)$.

What is the x-value of P?

- A. $\frac{\pi}{2}$ B.
- π
- C. 21
- D. 3π
- E. 6π
- 3. Given $g(x)=1-4\cos\left[\frac{\pi}{2}(x-3)\right]$, which of the following statements is true?
 - The vertical shift of g(x) is -4.
 - II. The period of g(x) is 4.
 - **HI.** The phase shift is -3.
- (a) I only
- (b) II only
- (c) III only

- (d) I and II only
- (e) I, II and III

- What is the smallest positive value where $y = 3 2\sin\left[\frac{\pi}{8}(x-3)\right]$ has a point 4. at the minimum?
 - (a)

- (b) 3 (c) 5 (d) 5
- Which of the following is the graph of $y = \cos x + 1$? 5.

Score _____

FrenB

7. Sketch one cycle of $H(x) = -3 + 4\sin\left[\frac{\pi}{5}(x+2)\right]$

8. Sketch one cycle of $H(x) = 2 - 4\cos\left[\frac{1}{6}(x - \pi)\right]$

9. Find a cosine equation for this graph:

10. Find a sine equation for this graph:

11. If $H(x) = -3 + 3\cos\left[\frac{\pi}{7}(x+1)\right]$, find the first three negative values of x where H(x) = -1.3.

$$-1.3 = -3 + 3 \cos \frac{\pi}{7} (\kappa + 1)$$

$$1.7 = 3 \cos \frac{\pi}{7} (\kappa + 1)$$

$$.567 = \cos \frac{\pi}{7} (\kappa + 1)$$

$$.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 2 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

$$-.968 \pm 14 \cos 3 = \frac{\pi}{7} (\kappa + 1)$$

- 12. A baseball player who bats .300 over a season has streaks and slumps and rarely bats exactly .300 at a particular time. Let us assume that a player's batting average varies sinusoidally with time and ranges from a high of .425 to a low of .175. Let us further assume that each cycle lasts 54 games and he reaches his first high 10 games into the season.
- a. Sketch two cycles of the situation.
- b. Find an equation that represents B (batting average) in terms of time t.
- c. According to this model, what would be his batting average in the last game of the season (game 162)?
- d. When are the first three times that his batting average is .375?

d)
$$375 = .3 + .125 \cos \frac{\pi}{27} (t-10)$$

 $0.75 = .125 \cos \frac{\pi}{27} (t-10)$
 $-2.25 = .05 \frac{\pi}{27} (t-10)$
 $.6 = cos \frac{\pi}{27} (t-10)$

0) .350

$$t = \begin{cases} 17.970 \pm 541 \\ 2.030 \pm 541 \end{cases}$$

t= GAME 2, GAME 18 \$ GAME SO.