Honors PreCalculus '22-23
Piece-Wise Defined Functions Test Dr. Quattrin
Calculator allowed

Name: \qquad
score \qquad

1. The graph of the function f is shown in the figure above. For how many values of x in the open interval $(-5,5)$ is f not differentiable?
a) One
b) Two
c) Three
d) Four
e) Five
2. Let f be defined by $f(x)=\left\{\begin{array}{l}x^{2}-k x \text { for } x<4 \\ 4 \sin \left(\frac{\pi}{2} x\right) \text { for } x \geq 4\end{array}\right.$. Determine the value of k for which is continuous for all real x.
a) -6
b) -2
c) -4
d) 4
e) -3
3. The function f is shown below. Which of the following statements about the function f, shown below, is false?

a) $\lim f(x)$ does not exist $x \rightarrow 0$
b) $\quad \lim f(x)$ exists
$x \rightarrow 2$
c) $\quad f$ is discontinuous at $x=-2$
d) $\quad \lim _{h \rightarrow 0} \frac{f(1-h)+3}{h}$ exists
4. The function f defined on all the Reals such that $f(x)=\left\{\begin{array}{l}2-m x, \text { if } x \leq 3 \\ k \sqrt{x^{2}+7}, \text { if } x>3\end{array}\right.$
. For which of the following values of k and m will the function f be both continuous and differentiable on its entire domain?
a) $m=\frac{6}{7}, k=\frac{8}{7}$
b) $m=-\frac{6}{7}, k=\frac{8}{7}$
c) $\quad m=\frac{6}{7}, k=-\frac{8}{7}$
d) $m=-\frac{6}{7}, k=-\frac{8}{7}$
5. A function $f(x)$ has a vertical asymptote at $x=2$. The derivative of $f(x)$ is negative for all $x \neq 2$. Which of the following statements are false?
I. $\lim f(x)=+\infty$ $x \rightarrow 2$
(a) I only
(b) II only
(c) III only
(d) I and II only
(e) I, II and III
6. Given this graph of $f(x)$, which of the following might be the equation?

a) $\quad f(x)=\left\{\begin{array}{c}-x, \text { if }-4 \leq x<-2 \\ \sqrt{4-x^{2}}, \text { if }-2 \leq x \leq 2 \\ 1, \text { if } 2<x \leq 4\end{array}\right.$
b) $f(x)=\left\{\begin{array}{c}-x-2, \text { if }-4 \leq x<-2 \\ 2-\frac{1}{2} x^{2}, \text { if }-2 \leq x \leq 2 \\ 1, \text { if } 2<x \leq 4\end{array}\right.$
c) $\quad f(x)=\left\{\begin{array}{c}x+2, \text { if }-4 \leq x<-2 \\ \sqrt{4-x^{2}}, \text { if }-2 \leq x \leq 2 \\ 1, \text { if } 2 \leq x \leq 4\end{array}\right.$
d) $f(x)=\left\{\begin{array}{c}-x-2, \text { if }-4 \leq x<-2 \\ 2-\frac{1}{2} x^{2}, \text { if }-2 \leq x<2 \\ 1, \text { if } 2 \leq x \leq 4\end{array}\right.$
7. At $x=0$, the function given by $f(x)=\left\{\begin{array}{cc}x^{2}+1, & \text { if } x \leq 0 \\ -\sqrt{4 x-x^{2}}, & \text { if } 0<x\end{array}\right.$ is
a) Undefined
b) Continuous but not differentiable
c) Differentiable but not continuous
d) Neither continuous nor differentiable
e) Both continuous and differentiable

8. Given the graph of $f(x)$ above, the reason $x=0$ is a critical value is because
a) $\quad f(x)$ is not continuous at $x=0$
b) $\quad f^{\prime}(x)=0$ at $x=0$
c) $\quad f^{\prime}(x)$ does not exist at $x=0$
d) $x=0$ is an endpoint of the domain restriction
9. Which of the following is the graph of $f(x)=\left\{\begin{array}{c}\frac{8 x}{4+x^{2}}, \text { if } 0<x \\ 2, \text { if } x=0 \\ \frac{-8 x}{x^{2}-2}, \text { if } x<0\end{array}\right.$?
a)

c)

b)

d)

Honors PreCalculus '22-23
Piece-Wise Defined Functions Test
Dr. Quattrin
Calculator allowed

1. $f(x)=\left\{\begin{array}{c}\frac{1}{x+2}, \text { if } x<-2 \\ 3, \text { if } x=-2 \\ 4-x^{2}, \text { if }-2<x<2 \\ \frac{x-2}{x-1}, \quad \text { if } 2 \leq x\end{array}\right.$
i) Is $f(x)$ continuous at $x=-2$? Why or why not?
ii) Is it differentiable at $x=-2$? Why or why not?
2. $f(x)=\left\{\begin{array}{c}\frac{1}{x+2}, \text { if } x<-2 \\ 3, \text { if } x=-2 \\ 4-x^{2}, \text { if }-2<x<2 \\ \frac{x-2}{x-1}, \quad \text { if } 2 \leq x\end{array}\right.$
i) Is $f(x)$ continuous at $x=2$? Why or why not?
ii) Is it differentiable at $x=2$? Why or why not?
3. Sketch $f(x)=\left\{\begin{array}{l}\frac{1}{x+2}, \text { if } x<-2 \\ 3, \text { if } x=-2 \\ 4-x^{2}, \text { if }-2<x<2 \\ \frac{x-2}{x-1}, \quad \text { if } 2 \leq x\end{array}\right.$. State the Traits listed.

Domain:

Zeros:

VAs:

EB (Left):
x-values of discontinuities:
x-values of non-differentiability:

Extreme Points (provide non-graphical evidence):

