Honors Precalc '23 (Quattrin) Name:
Spring Final - Part I; 30 Minutes
Calculator Allowed
score \qquad

1. Which of the following statements must be false?
(A) $\frac{d}{d x}\left(x^{3}+4 x^{2}-\sqrt[3]{x^{2}}-\frac{1}{7 x}\right)=3 x^{2}+8 x-\frac{3}{2} x^{1 / 2}+\frac{1}{7 x^{2}}$
(B) $\frac{d}{d x} \ln \left(1-x^{3}\right)=\frac{-3 x^{2}}{1-x^{3}}$
(C) $\frac{d}{d x}(x \tan x)=\tan x+x \sec ^{2} x$
(D) $\frac{d}{d x} e^{\csc x}=e^{\csc x} \csc ^{2} x$
2. A particle is moving along the x-axis in such a way that its velocity at time $t>0$ is given by $v(t)=\frac{\ln t}{t}$. At what value of t does v attain its maximum?
(A) 1
(B) $e^{1 / 2}$
(C) e
(D) $e^{3 / 2}$
(E) There is no maximum value of v.
3. Given the functions $f(x)$ and $g(x)$ that are both continuous and differentiable, and that have values given on the table below, find $h^{\prime}(4)$, given that $h(x)=f\left(\frac{1}{2} x\right) \cdot g(2 x)$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	4	-2	8	1
4	10	8	4	3
8	6	-12	2	4

(A) 12
(B) 30
(C) -8
(D) 62
(E) 76
4. The equation of the line tangent to the graph of $y=\frac{x-4}{1-2 x}$ at the point $(0, f(0))$ is
(A) $7 x+y=-4$
(B) $7 x-y=4$
(C) $x-7 y=28$
(D) $x-7 y=12$
(E) $x+7 y=-28$
5. Which of these functions has a point of exclusion at $(1,3)$ and a vertical asymptote at $x=\frac{1}{2}$?
(A) $g(x)=\frac{x-1}{4 x^{2}-1}$
(B) $\quad h(x)=\frac{x-1}{2 x^{2}-3 x+1}$
(C) $f(x)=\frac{2 x+1}{4 x^{2}-1}$
(D) $k(x)=\frac{3 x-3}{2 x^{2}-3 x+1}$
6. What is the slope of the line tangent to the curve $y^{2}+x=-2 x y-5$ at the point (2,1)?
(A) $-\frac{4}{3}$
(B) $-\frac{3}{4}$
(C) $-\frac{1}{2}$
(D) $-\frac{1}{4}$
(E) 0

Graph of f

Graph of g
7. The graphs of the functions f and g are shown above. If $h(x)=g(f(x))$, then $h^{\prime}(3)=$
(A) -1
(B) 0
(C) 1
(D) 3
(E) dne
8. At what approximate rate (in cubic meters per minute) is the volume of a cube changing at the instant when the surface area is 54 square meters and each edge is increasing at the rate of 3 meters per minute?
(A) 9
(B) 27
(C) 54
(D) 81
(E) d162ne
9. $\lim _{x \rightarrow \infty} \frac{2+\ln (3 x)}{5+\ln \left(2 x^{2}\right)}=$
(A) 0
(B) $\frac{2}{5}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$
(E) ∞

10. The graphs of the functions f and g are shown above. The value of $\lim g(f(x))=$ $x \rightarrow 2$
(A) 0
(B) 1
(C) 2
(D) -2
(E) dne

11. Given the graph of $f(x)$ above, the reason that $f(x)$ is not continuous at $x=0$ is because
(A) $\quad f(0)$ does not exist
(B) $\quad \lim f(x) \neq \lim f(x)$

$$
x \rightarrow 0^{-} \quad x \rightarrow 0^{+}
$$

(C) $\quad \lim f(x) \neq f(0)$ $x \rightarrow 0$
(D) $\lim f(x)$ does not exist $x \rightarrow 0$
12. If $y=x^{2} e^{2 x}$, then $\frac{d y}{d x}=$
a) $2 x e^{2 x}$
b) $4 x e^{2 x}$
c) $x e^{2 x}(x+1)$
d) $2 x e^{2 x}(x+1)$
e) $x e^{2 x}(x+2)$
13. Let f be the function defined below, where a and b are constants. If f is differentiable at $x=1$, what are the values of a and b ?

$$
f(x)=\left\{\begin{array}{l}
a x^{3}-x, \text { if } x \leq 1 \\
b x^{2}+5, \text { if } x>1
\end{array}\right.
$$

(A) $a=-7, b=-11$
(B) $\quad a=-11, b=-17$
(C) $a=-17, b=-11$
(D) $\quad a=-11, b=-7$

14. At what point on the above curve is $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}>0$
a) M
b) N
c) $\quad \mathrm{P}$
d) $\quad Q$

15. The function $h^{\prime}(x)$ is graphed above. Which of these functions represents $h(x)$?
a)

c)

e)

b)

d)

Honors Precalc '23
Spring Final - Part IIA; 60 Minutes
Dr. Quattrin
Calculator Allowed

Name: \qquad
score \qquad

1a. $\frac{d}{d x}\left(\cos \left(x^{2}+4\right)\right)$

1b. $\frac{d}{d x}(\sqrt{3 x} \cot 6 x)$

1c. $\frac{d}{d x}\left(\sqrt{\tan \left(1-x^{2}\right)}\right)=$

1d. $\frac{d}{d x}\left(\sec ^{-1}\left(e^{5 x}\right)\right)=$
2. Find the domain and Zeros of $f(x)=\frac{x^{2}+2 x-3}{3 x^{3}+16 x^{2}+21 x}$. Show the supporting algebraic work.

Domain: \qquad

Zeros: \qquad
3. Find the extreme points of $f(x)=\frac{x^{2}+2 x-3}{3 x^{3}+16 x^{2}+21 x}$. Show the algebraic work to support the critical values.

Extreme Points:
4. Find the domain and Zeros of $g(x)=(4-x) \sqrt{6 x-x^{2}}$. Show the supporting algebraic work.

Domain: \qquad

Zeros: \qquad
5. Find the extreme points of $g(x)=(4-x) \sqrt{6 x-x^{2}}$. Show the algebraic work to support the critical values.

Extreme Points:
6. Find the domain, VAs, and Zeros of $f(x)=\ln \left(-x^{3}-3 x^{2}+4 x\right)$ on $x \in[-6,2]$. Show the sign pattern to support the domain.

Domain: \qquad

VAs: \qquad
Zeros: \qquad
7. Find the extreme points of $f(x)=\ln \left(-x^{3}-3 x^{2}+4 x\right)$ on $x \in[-6,2]$. Show the algebraic work to support the critical values.

Extreme Points:
8. Using the functions from \#1 and \#2, find the traits and sketch

$$
K(x)=\left\{\begin{array}{ccc}
f(x) & \text { if } & x<0 \\
g(x) \text { if } & x \geq 0
\end{array}\right.
$$

Domain:

Domain:
Zeros:
VAs:
EB (Left):
Extremes:
9. Find the traits and sketch of $f(x)=\ln \left(-x^{3}-3 x^{2}+4 x\right)$ on $x \in[-6,2]$.

Domain:
Zeros:
VAs:
EB (Left):
Extremes:

Range:
y - intercept:
POEs:
EB (Right):

