Table of Contents

Introduction: General Overview of Calculus
iv

Chapter 1: Review of Derivatives
Overview:
1.1: The Power and Exponential Rules with the Chain Rule
3
1.2: Trig, Trig Inverse, and Log Rules
16
1.3: Local Linearity, Euler’s Method, and Approximations
24
1.4: Product and Quotient Rules
35
1.5: Higher Order Derivatives
49
1.6: Implicit Differentiation
55
1.7: Logarithmic Differentiation
66
Chapter 1 Test
72
Chapter 1 Answer Key
76

Chapter 2: Anti-Derivatives
Overview:
87
2.1: The Power and Transcendental Rules
89
2.2: Integration by Substitution—the Chain Rule
100
2.3: Separable Differential Equations
116
2.4: Integration by Substitution—Back Substitution
125
2.5: Powers of Trig Functions: Sine and Cosine
133
2.6: Powers of Trig Functions: Secant and Tangent
141
2.7: Slope Fields
148
Chapter 2 Test
170
Chapter 2 Answer Key
177

Chapter 3 Applications of the Derivative
Overview:
187
3.1: Extremes, the Derivative Tests, and Optimization
188
3.2: The Mean Value and Rolle’s Theorems
207
3.3: The Second Derivative, Points of Inflection, and Concavity
220
3.4: Graphing with Derivatives
229
3.5: Graphical Analysis I
248
3.6: Motion
263
3.7: Related Rates
279
Chapter 3 Test
291
Chapter 3 Answer Key
301
Chapter 4: Integrals
Overview: 317
4.1: The Fundamental Theorem of Calculus 318
4.2: Definite Integrals and Integration by Substitution 331
4.3: Context: Area, Displacement, and Net Change 337
4.4: Graphical Analysis II 347
4.5: Approximate Integration – Riemann Sums 364
4.6: Accumulation of Rates 385
Chapter 4 Test 403
Chapter 4 Answer Key 411

Chapter 5 Applications of Integrals
Overview: 419
5.1: Area between Two Curves 421
5.2: Arc Length 432
5.3: Volume by Cross-section Method 439
5.4: Volume by Rotation about an Axis 455
5.5: Volume by Rotation about a Line not an Axis 477
5.6: Volume by Shell Method 494
Chapter 5 Test 503
Chapter 5 Answer Key 510

Chapter 6: Limits, Continuity and Differentiability
Overview: Introduction to Limits 515
6.1: Limits, L'Hopital’s Rule, and The Limit Definitions of a Derivative 517
6.2: Continuity and One-sided Limits 534
6.3: Differentiability and Smoothness 554
6.4: Limits at Infinity and End Behavior 569
6.5: Type I Improper Integrals 580
6.6: Infinite Limits and Type II Improper Integrals 588
Chapter 6 Test 594
Chapter 6 Answer Key 602
Chapter 7: Sequences and Numerical Series

Overview:
7.1: Intro to Sequences 609
7.2: Intro to Series 619
7.3: Convergence and Divergence 626
7.4: The Integral Test 637
7.5: The Comparison Tests 641
7.6: Absolute and Conditional Convergence 651
7.7: The Ratio Test and Nth Root Tests 658
7.8: General Series Summary 665

Chapter 7 Test 671
Chapter 7 Answer Key 675

Chapter 8: Advanced Integration

Overview:
8.1: Integrals of Rational Functions 680
8.2: Partial Fractions – Non-Repeated Linear Factors 690
8.3: Logistic Growth 702
8.4: Integration by Parts 714
8.5: Trig Substitution 726
8.6: Partial Fractions – Repeated Linear Factors 733
8.7: Partial Fractions -- Quadratic Factors 739
8.8: General Integration 745

Chapter 8 Test 755
Chapter 8 Answer Key 761

Chapter 9: Parametric and Polar Coordinates

Overview: Parametric and Polar Coordinates 771
9.1: Parametrics and Motion 772
9.2: Parametric and Graphing 782
9.3: Polar and Cartesian Graphs 795
9.4: Polar Coordinates, Arc Length, and Simple Area 805
9.5: Area Involving Two Polar Graphs 815
9.6: Derivatives and Polar Graphs 830

Chapter 9 Test 840
Chapter 9 Answer Key 844
Chapter 10: Power Series
 Overview: Power Series 853
 10.1: Taylor and Maclaurin Series 854
 10.2: Power Series 866
 10.3: Review of Numerical Series 875
 10.4: Radius and Intervals of Convergence 887
 Chapter 10 Test 898
 Chapter 10 Answer Key 902

Chapter 11: AP Calculus BC FRQ Review
 Overview: The last 10 years
 11.1 Accumulation of Rates (AB1)
 11.2 Reasoning from Tabular Data (AB2)
 11.3 Graphical Analysis (AB3)
 11.4 Power Series
 11.5 Differential Equations (AB2)
 11.6 Parametric Motion
 11.7 Polar Coordinates
 11.8 Related Rates (AB7)
 11.9 Area and Volume (AB6)
 11.10 Advanced Integration.

Appendix A: Additional AP Calculus AB FRQ
 Overview:
 A.1: Rectilinear Motion (AB4)
 A.2: Miscellaneous Topics (AB8)

Appendix B: The Formula Booklet 947

Appendix C: Synthesis of PreCalculus
 Overview 877
 C.1: Recognizing and Identifying Graphs, and Graphing from Traits 881
 C.2: Factoring Review and Zeroes of Functions 902
 C.3: Sign Patterns and Domains 911
 C.4: Calculator Review 924
 C.5: Important Facts for Calculus 943
Introduction: General Overview of Calculus

Calculus as a subject is fundamentally different from the topics of math that came before it. Where Arithmetic, Algebra, Geometry, and even Trigonometry deal with what is, Calculus deals with what might be. At its core, Calculus is founded on something that you were told in previous math classes could not be done: dividing by zero and working with infinity. These could not be done in the context of earlier math, but that does not mean they cannot be done at all. We just need to expand our horizons to include the possibility that they can be done and then figure out how.

Since the advent and widespread use of the graphing calculator, there has been a split within the mathematical community over the nature and accessibility of the Calculus. So-called “traditional calculus” emphasizes the algebraic aspects of the topic and considers Calculus to be the study of functions, as Euler did in the 17th century. As such it is an extension of analytic geometry into the real of analysis that requires rigorous use of theorems and proofs as well as long intricate algebraic manipulations. This view has led many to consider college calculus classes to be a gatehouse, or weeding-out, class that restricts access to science, pre-med, and engineering programs.

The Reform Calculus Movement of the 1990s emphasizes open access to the Calculus by highlighting understanding of the basic concepts and implications and by de-emphasizing the rigor. The graphing calculator can make the algebra superfluous. This approach tends to view Calculus as the study of change.

As with any dichotomous situation, the answer is somewhere in between. Both positions are correct and certainly are not mutually exclusive. In good Ignatian tradition, we will take a flexible approach to the subject and prepare the student for whichever situation they might face in future courses.

There are four operations involved in Calculus:

- Limits
- Derivatives
- Indefinite integrals (or Anti-Derivatives)
- Definite Integrals

Limits are the foundation of the other three and are what was referred to above in terms of “what might be.” A limit is an operation that allows one to consider what
previously had been numerical impossibilities, like dividing by zero. It is an extrapolation of known values to a logical conclusion.

The derivative is a function that yields the slope of the tangent line. If the line is an expression of distance and time, the slope becomes a rate of change. In other words, the context expands the implications.

The indefinite integral is, as noted above, an anti-derivative, meaning it is the inverse operation of the derivative. This is one of the ideas adopted by AP from the Reform Calculus. Older calculus books do not use the phrase “anti-derivative” and emphasize the link between the two kinds of integrals. Traditional calculus tends to break the Calculus into differential calculus and integral calculus, a distinction still found in many college programs. The indefinite integral is the bridge between the derivatives and definite integrals.

The definite integral is an operation that yields the accumulation of area under a curve. This is an area where the graphing calculator has had a high impact.

How does this relate to the AP Calculus syllabus? The AB and BC designations for the AP calculus tests hearken back to the old college Calculus 1A, 1B and 1C courses. The 1A material is comprised of the limits and derivatives. The 1B class covered basics indefinite and definite integrals with their applications. The 1C course covered advanced integration techniques, parametric and polar mode, and sequences and series. The BC Calculus test (and class) actually cover all three areas—A, B, and C—which is why passing the test carried one year of credit. (The 1A, 1B and 1C used to be quarter classes, not semester classes.)

Course Goals

There are two main goals for the course:

1. Learn the subject of the Calculus.
2. Pass the AP test.

These goals are not identical. It is possible to know the subject and not do well on the test due to the particular emphases and vocabulary of the test. It is possible to do well on the test with a modicum of knowledge and an arsenal of test-taking skills.

There is a third, more important goal:
3. Begin to think about your own learning process.

We teachers must regrettably acknowledge that, while you are all capable of success in higher mathematics, this may be the last math class you take. By preparing you for advanced calculus, we are keeping your college options open, but we know your interests might lie elsewhere in the future. Therefore, we want you to understand that the material is somewhat secondary to the process. We would like for you to become life-long learners of whatever subjects interest you, including math, and know you have the tools to explore any field that peaks your interest.

Enduring Understandings

What does this third goal mean in terms of the subject of Calculus? What do we really want you to carry forward? What understanding do we hope you achieve and maintain?

1. At a basic level, you will become conversant in the language and notation of math. You will be able to translate mathematical concepts into “normal” language and vice versa.

2. You will be able to reason logically through a problem.

3. You will begin to see the underlying structure of the mathematical system so as to recognize the assumptions, flaws, and logical conclusions. You may begin to see alternatives to the system. Ideally, you will recognize this systemic approach in other fields and apply the same analysis to them.

4. You will hopefully go beyond the utilitarian mode of learning (“When are we going to use this?” or “Is this going to be on the test?”) and begin to learn new things for the sake of learning them. Ultimately, you might begin to appreciate the power and the intrinsic beauty people find in the material.

5. You will begin to develop a meta-cognitive approach to learning. That is, you will begin to think about your thinking process and how that affects your learning.

6. You will develop a confidence and tenacity when approaching lengthy and intricate math problems. By breaking down a problem into its component parts, analyzing and resolving each part, and then reassembling the whole, you will develop a sense that no problem is beyond your grasp.
7. You will develop the ability to manage large amounts of information by learning to prioritize time, tasks, and goals.

The AP program has set forward nine Goals in their course description for Calculus that are more material-oriented:

- Students should be able to work with functions represented in a variety of ways: Graphical, numerical, verbal, and analytic (algebraic). They should understand the connections between these representations.
- Students should understand the meaning of the derivative in terms of a rate of change and local linear approximation and should be able to use derivatives to solve a variety of problems.
- Students should understand the meaning of the definite integral both as a limit of Riemann sums and as a net accumulation of change and should be able to use integrals to solve a variety of problems.
- Students should understand the relationship between the derivative and the definite integral as expressed in the Fundamental Theorem of Calculus.
- Students should be able to communicate mathematics and explain solutions to problems both verbally and in written sentences.
- Students should be able to model a written description of a physical situation with a function, a differential equation, or an integral.
- Students should be able to use technology to help solve problems, experiment, interpret results, and support conclusions.
- Students should be able to determine the reasonableness of solutions, including sign, size, relative accuracy, and units of measure.
- Students should develop an appreciation of Calculus as a coherent body of knowledge and as a human accomplishment.

The first eight are tested in very specific ways on the AP exam. Obviously, this last one is impossible to test. In order for us to achieve OUR first two goals, we must address the AP goals in the manner in which they will be tested. Certain sections of this book are written in a manner that should help us to achieve this.