
Directions: Round to 3 decimal places. Show all work.

The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the 1. following intervals is f increasing? f= 4x3+2x=2x(x2+1)

- (d) $(0, \infty)$ e) $\left(-\infty, \frac{1}{\sqrt{2}}\right)$
- What is the area of the largest rectangle with lower base on the x -2. axis and upper vertices on the curve $y=12-x^2$?
- a)
- b)

- c) 16 d)

= 2xy $A = 2x(12-x^2) = 24x - 2x^3$

$$\frac{dA}{de} = 2u - 6x^2 = 0$$

$$k = \pm 2$$

The derivative of f is given by $f'(x) = e^x(-x^3 + 3x)$ for 0 < x < 5. at value of x does f(x) have a local minimum 03.

At what value of x does f(x) have a local minimum?

- a)
- (b) 0.618
- c)

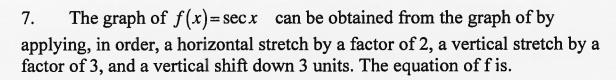
- d)
- e) For no value of x
- Find the equation of the line tangent to the graph of $y = 7x x^2$ at the point where f'(x) = 31127-20-23

a)
$$y = 5x - 10$$

c)
$$y = 3x + 8$$

y=3x+4

d)
$$y = 3x - 10$$

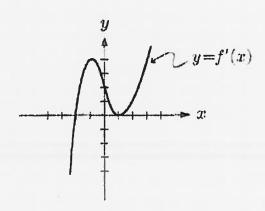

e)
$$y = 3x - 16$$

5. Find all the solutions to
$$\csc x = 2.4$$
 $\times = 5$

- $x = .429 \pm 2\pi n$ a)
- $x = 2.712 \pm 2\pi n$ b)
- $x = 1.414 \pm 2\pi n$
- d) $x = .429 \pm 2\pi n$ and $x = 1.414 \pm 2\pi n$
- $x = .429 \pm 2\pi n$ and $x = 2.712 \pm 2\pi n$

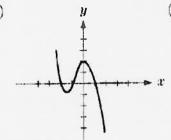
6.
$$\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2} = \lim_{x \to 0} \sqrt{\frac{2(5x^2 + 8)}{2(3x^2 - 16)}} = \frac{8}{-16}$$

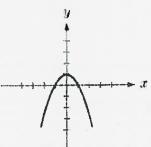
- $-\frac{1}{2}$ b) 0 c) 1 d) $\frac{5}{3}$ e)
- dne

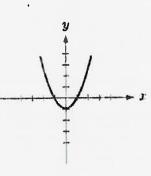

a)
$$f(x) = -3 + 3\sec 2x$$

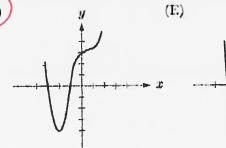
$$f(x) = -3 + 3\sec\frac{x}{2}$$

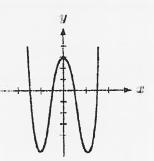
$$f(x) = 3 - 3\sec 2x$$


$$f(x) = 3 - 3\sec\frac{x}{2}$$


- e) None of the above
- 8. The amplitude of the graph of $y = 3 + 2\cos(x \pi)$
- a) $\pi/2$
- b) π
- (c)
- d) 3
 - e)
- 2π


The graph of the derivative of f is shown above. Which of the following could be the graph of f?


(A)



(C)

f is Cubic so f is 4.

AT X=1, f' HOS A
"BOUNCER" SO F WAS A POLIBUT NOT ANEXTREME

- Let θ be the acute angle in standard position. If $\sin \theta = \frac{7}{15}$, then y =7 , r=15 $\tan \theta =$
- (b) $\frac{7\sqrt{11}}{44}$ (c) $\frac{15\sqrt{11}}{44}$ $\times = \sqrt{176}$
 - d) $\frac{4\sqrt{11}}{15}$ e) $\frac{4\sqrt{11}}{7}$
- 11.
- a.
 - d. (4,-16) only e. (0,0) and (2,4)
- What is the period of $y = \sin(6x)$? 12.
- b) $\frac{\pi}{3}$ b) $\frac{2\pi}{3}$ c) 2π d) 6π e) 12π

PreCalc Honors 15 -16

Name

Fall Final

CALCULATOR ALLOWED Score____

1. Solve
$$\sin\left(\frac{\pi}{3} - x\right) + 1 = \sin\left(x + \frac{\pi}{3}\right)$$
 exactly for $x \in [0, 4\pi]$

SINT COS X - COST SINC +1 = SINX COST + COSXSINT 3

[3 COSX + 1 SINX +1 = 1 SINX + 13 COSX

1 = SINX

$$X = \frac{1}{2} \pm 2\pi$$

$$X = \frac{1}{2} \pm 2\pi$$

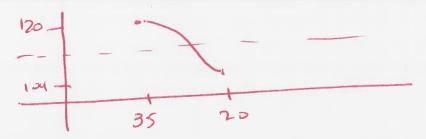
2.
$$D_{x} \left[8x^{7} - 3x^{2} + \frac{1}{x^{7}} - \frac{2}{\sqrt[9]{x^{4}}} + \pi^{4} \right]$$

$$= 56x^{6} - 6x - 7x^{-8} + \frac{8}{9}x^{-\frac{13}{4}}$$

3. Homer Simpson has accidentally stolen a nuclear submarine. If he travels at 27 miles on a bearing of 18°, then turns and goes 57 miles at a bearing of 85°, and finally travels 300 miles at 270°, what is his total displacement and direction?

4a. Find the zeros, algebraically, of $y = x^4 - 5x^3 - 15x^2 + 45x + 54$.

4b. Find the extreme points, graphically, of $y = x^4 - 5x^3 - 15x^2 + 45x + 54$. Show the derivative before using your calculator.


$$\frac{dy}{dx} = 4x^3 - 15x^2 - 30x + 45$$

$$(-2.155, -41.029)$$

$$(1.083, 80.166)$$

$$(4.822, -92.743)$$

- 5. Researchers find an extra-terrestrial being. In studying it, they find that its body temperature varies sinusoidally with time. 35 minutes after they start timing, the temperature is at its highest, which is 120°C. 20 minutes after it has reached its maximum, the temperature hits it minimum, which is 104°C.
- (a) Sketch a graph of the temperature as a function of time.

(b) Write a sinusoidal equation that describes the temperature y in terms of t.

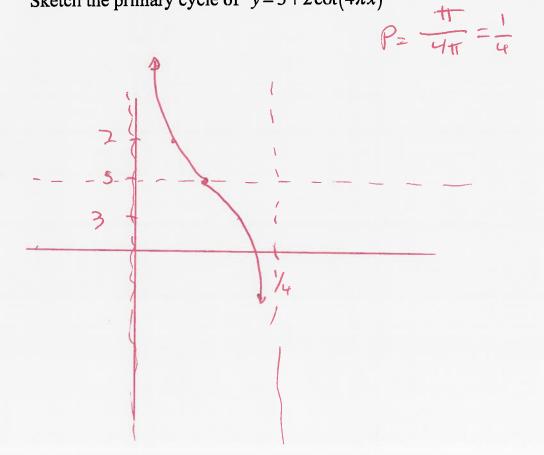
(c) What was the temperature when they started timing?

(d) What are the first three times that the temperature is 111°C?

$$III = 112 + 8\cos \frac{\pi}{20} (t - 35)$$

$$-\frac{1}{8} = \cos \frac{\pi}{20} (t - 35)$$

$$\frac{\pi}{20} (t - 35) = \begin{cases} 1.696 \pm 2\pi n \\ -1.696 \pm 2\pi n \end{cases}$$


$$t - 35 = \begin{cases} 10.798 \pm 40n \\ -6.798 \pm 40n \end{cases}$$

$$t = \begin{cases} 245.798 \pm 40n \\ 24.200 \pm 40n \end{cases}$$

t=5,798, 24,202, 45,798

6. Find an inequality that has this sign pattern and solution:

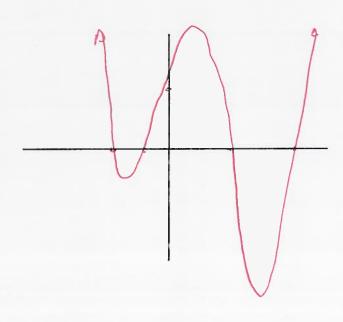
7. Sketch the primary cycle of $y = 5 + 2\cot(4\pi x)$

8. Prove
$$1 + \sin(2x) = \frac{\sec^2 x + 2\sin x \sec x}{1 + \tan^2 x} = \frac{52x + (52c x + 2s \cos x)}{52c x}$$

9. Find the traits and sketch of $y = x^4 - 5x^3 - 15x^2 + 45x + 54$.

Domain: ALL REALS

Y-Int: (0,54)


Zeros: $(\pm 3.5)(-1.0)(6.0)$

End Behavior: LEFT UP

Extreme Values:

y = -41.029, 80, 166, -97.743

